Remarks on Feedforward-Feedback Controller Using Simple Recurrent Quaternion Neural Network

Kazuhiko Takahashi
{"title":"Remarks on Feedforward-Feedback Controller Using Simple Recurrent Quaternion Neural Network","authors":"Kazuhiko Takahashi","doi":"10.1109/CCTA.2018.8511593","DOIUrl":null,"url":null,"abstract":"In this study, a simple recurrent neural network is designed for controlling nonlinear systems. All signals and parameters of the network are quaternion numbers, and the network is trained with a real-time recurrent learning algorithm. The control system is composed of a feedforward-feedback controller based on a recurrent quaternion neural network and a feedback controller to reconcile the plant output with the desired output. A feedback error learning method is used for the online training of the feedforward-feedback controller. The numerical simulations of controlling discrete-time nonlinear plants are conducted to evaluate the characteristics of the recurrent quaternion neural network-based controller. Simulation results show the feasibility and the effectiveness of the proposed controller.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this study, a simple recurrent neural network is designed for controlling nonlinear systems. All signals and parameters of the network are quaternion numbers, and the network is trained with a real-time recurrent learning algorithm. The control system is composed of a feedforward-feedback controller based on a recurrent quaternion neural network and a feedback controller to reconcile the plant output with the desired output. A feedback error learning method is used for the online training of the feedforward-feedback controller. The numerical simulations of controlling discrete-time nonlinear plants are conducted to evaluate the characteristics of the recurrent quaternion neural network-based controller. Simulation results show the feasibility and the effectiveness of the proposed controller.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于简单递归四元数神经网络的前馈-反馈控制器评述
在本研究中,设计了一个简单的递归神经网络来控制非线性系统。网络的所有信号和参数都是四元数,并使用实时循环学习算法对网络进行训练。该控制系统由基于循环四元数神经网络的前馈-反馈控制器和用于协调目标输出与期望输出的反馈控制器组成。采用反馈误差学习方法对前馈-反馈控制器进行在线训练。通过对离散非线性对象控制的数值仿真,评价了基于循环四元数神经网络的控制器的特性。仿真结果表明了该控制器的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust $\mathcal{H}_{\infty}$ Pointing Error Control of Free Space Optical Communication Systems Incremental Reference Generation for Nonsingular Control on $SE (3)$ A Distributed Parameter Approach to Model the Transcriptional Response of Escherichia Coli in a Scale-Down Reactor Passivity-Short-based Stability Analysis on Electricity Market Trading System Considering Negative Price Robust and Secure UAV Navigation Using GNSS, Phased-Array Radio System and Inertial Sensor Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1