{"title":"Spasing and amplification in plasmonic nanosystems","authors":"M. Stockman","doi":"10.1109/OMEMS.2012.6318789","DOIUrl":null,"url":null,"abstract":"Surface plasmon amplification by stimulated emission of radiation (spaser) is a nanoscopic quantum generator of coherent local optical fields with high intensity. We will consider the latest development in the theory of spaser and review the large number of experimental data currently available Nanoplasmonics deals with collective electron dynamics on the surface of metal nanostructures, which arises due to excitations called surface plasmons [1, 2]. The surface plasmons localize and concentrate optical energy in nanoscopic regions creating highly enhanced local optical fields. They undergo ultrafast dynamics with timescales as short as a few hundred attoseconds [3]. We will start with a brief overview of the state of nanoplasmonics and its many applications [2].","PeriodicalId":347863,"journal":{"name":"2012 International Conference on Optical MEMS and Nanophotonics","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Optical MEMS and Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OMEMS.2012.6318789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Surface plasmon amplification by stimulated emission of radiation (spaser) is a nanoscopic quantum generator of coherent local optical fields with high intensity. We will consider the latest development in the theory of spaser and review the large number of experimental data currently available Nanoplasmonics deals with collective electron dynamics on the surface of metal nanostructures, which arises due to excitations called surface plasmons [1, 2]. The surface plasmons localize and concentrate optical energy in nanoscopic regions creating highly enhanced local optical fields. They undergo ultrafast dynamics with timescales as short as a few hundred attoseconds [3]. We will start with a brief overview of the state of nanoplasmonics and its many applications [2].