AI-assisted monitoring of COVID-19 community isolation in Thailand

Natthanan Ruengchaijatuporn, Parin Kittipongdaja, Tagon Sompong, Pasit Jakkrawankul, P. Torvorapanit, N. Chantasrisawad, Wariya Chintanapakdee, Thanisa Tongbai, A. Petchlorlian, Wiroon Sriborrirux, C. Chunharas, O. Putcharoen, E. Chuangsuwanich, S. Sriswasdi
{"title":"AI-assisted monitoring of COVID-19 community isolation in Thailand","authors":"Natthanan Ruengchaijatuporn, Parin Kittipongdaja, Tagon Sompong, Pasit Jakkrawankul, P. Torvorapanit, N. Chantasrisawad, Wariya Chintanapakdee, Thanisa Tongbai, A. Petchlorlian, Wiroon Sriborrirux, C. Chunharas, O. Putcharoen, E. Chuangsuwanich, S. Sriswasdi","doi":"10.1109/SSP53291.2023.10208057","DOIUrl":null,"url":null,"abstract":"By minimizing human movement and contact, community isolation is an effective containment measure for the COVID-19 pandemic, especially against later strains that cause less severe symptoms. Nonetheless, a significant number of patients who enter community isolation with mild symptoms eventually develop severe pneumonias and require hospitalization. Therefore, the ability to foresee severe cases would be indispensable for managing limited medical resources. Here, we developed a proof-of-concept machine learning model, using daily vital signs data from 1,123 community isolation patients in Bangkok, Thailand, that can predict future hospitalization events up to 3 days in advance with an area under the precision-recall curve of 0.95. The model requires simple inputs, including body temperature, pulse rate, peripheral oxygen saturation, and shortness of breath, that the patients can self-perform and report. Hence, our approach can aid clinicians in providing remote, proactive healthcare service in broad settings","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By minimizing human movement and contact, community isolation is an effective containment measure for the COVID-19 pandemic, especially against later strains that cause less severe symptoms. Nonetheless, a significant number of patients who enter community isolation with mild symptoms eventually develop severe pneumonias and require hospitalization. Therefore, the ability to foresee severe cases would be indispensable for managing limited medical resources. Here, we developed a proof-of-concept machine learning model, using daily vital signs data from 1,123 community isolation patients in Bangkok, Thailand, that can predict future hospitalization events up to 3 days in advance with an area under the precision-recall curve of 0.95. The model requires simple inputs, including body temperature, pulse rate, peripheral oxygen saturation, and shortness of breath, that the patients can self-perform and report. Hence, our approach can aid clinicians in providing remote, proactive healthcare service in broad settings
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能辅助监测泰国COVID-19社区隔离
通过最大限度地减少人员流动和接触,社区隔离是COVID-19大流行的有效控制措施,特别是针对引起不太严重症状的后期菌株。尽管如此,仍有相当数量的轻度症状进入社区隔离的患者最终发展为严重肺炎并需要住院治疗。因此,预见重症病例的能力对于管理有限的医疗资源是必不可少的。在这里,我们开发了一个概念验证机器学习模型,使用来自泰国曼谷1123名社区隔离患者的每日生命体征数据,可以提前3天预测未来的住院事件,精确召回率曲线下的面积为0.95。该模型需要简单的输入,包括体温、脉搏率、外周氧饱和度和呼吸短促,患者可以自我执行并报告。因此,我们的方法可以帮助临床医生在广泛的环境中提供远程、主动的医疗保健服务
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra Low Delay Audio Source Separation Using Zeroth-Order Optimization Joint Channel Estimation and Symbol Detection in Overloaded MIMO Using ADMM Performance Analysis and Deep Learning Evaluation of URLLC Full-Duplex Energy Harvesting IoT Networks over Nakagami-m Fading Channels Accelerated Magnetic Resonance Parameter Mapping With Low-Rank Modeling and Deep Generative Priors Physical Characteristics Estimation for Irregularly Shaped Fruit Using Two Cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1