{"title":"Image analysis methods for solderball inspection in integrated circuit manufacturing","authors":"W. Blanz, J. Sanz, E. B. Hinkle","doi":"10.1109/56.2076","DOIUrl":null,"url":null,"abstract":"Machine vision methods are presented for the analysis of solder balls in integrated circuits. The algorithms are founded on counter fitting using a multiparameter Hough transform and on polynomial-classifier-based pattern recognition. The first method is used to show the complexity of the inspection problem, especially in the presence of high-precision requirements. In this connection, it is shown that subpixel accuracy is not obtainable even under the assumption of a perfect camera system which determines the resolution necessary for the measurement of a given maximum-volume distortion. The second method is carried out by computing a large number of features on the original image after individual solder balls are segmented by a projection technique. This approach can be considered as a control-free image segmentation paradigm, since it does not rely on properly sequencing several image-analysis modules. Further experimentation with a large pool of defective solder balls is necessary to confirm the applicability of these machine vision algorithms to a real-world manufacturing inspection systems. A general image-segmentation architecture is proposed, which enables the computation of the necessary low-level image features as well as pixel classification at video-rate speed. >","PeriodicalId":370047,"journal":{"name":"IEEE J. Robotics Autom.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/56.2076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Machine vision methods are presented for the analysis of solder balls in integrated circuits. The algorithms are founded on counter fitting using a multiparameter Hough transform and on polynomial-classifier-based pattern recognition. The first method is used to show the complexity of the inspection problem, especially in the presence of high-precision requirements. In this connection, it is shown that subpixel accuracy is not obtainable even under the assumption of a perfect camera system which determines the resolution necessary for the measurement of a given maximum-volume distortion. The second method is carried out by computing a large number of features on the original image after individual solder balls are segmented by a projection technique. This approach can be considered as a control-free image segmentation paradigm, since it does not rely on properly sequencing several image-analysis modules. Further experimentation with a large pool of defective solder balls is necessary to confirm the applicability of these machine vision algorithms to a real-world manufacturing inspection systems. A general image-segmentation architecture is proposed, which enables the computation of the necessary low-level image features as well as pixel classification at video-rate speed. >