A framework for integrated system of fault diagnosis in oil equipments based on neural networks

Qingzhong Zhou, Huie Zeng
{"title":"A framework for integrated system of fault diagnosis in oil equipments based on neural networks","authors":"Qingzhong Zhou, Huie Zeng","doi":"10.1109/ICSSEM.2012.6340749","DOIUrl":null,"url":null,"abstract":"When the traditional expert system is used for the fault diagnosis in oil equipments, there are some problems, such as difficult knowledge acquisition, low inference efficiency, poor adaptability. Therefore, it is proposed that neural networks are combined with the expert system for fault diagnosis. This paper presents the development of a framework for integrated system of fault diagnosis in oil equipments based on neural networks. The framework employs a combination of technologies, including dynamic database, comprehensive knowledge base and neural networks. This paper describes how to represent fault diagnosis knowledge using the neural networks, and discusses design process of the inference engine based on fuzzy neural networks. The results demonstrate that the accuracy is higher using the proposed system for fault diagnosis in oil equipments, and it can meet real-time requirements of maintenance, so this system outperforms the traditional system.","PeriodicalId":115037,"journal":{"name":"2012 3rd International Conference on System Science, Engineering Design and Manufacturing Informatization","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd International Conference on System Science, Engineering Design and Manufacturing Informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSEM.2012.6340749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

When the traditional expert system is used for the fault diagnosis in oil equipments, there are some problems, such as difficult knowledge acquisition, low inference efficiency, poor adaptability. Therefore, it is proposed that neural networks are combined with the expert system for fault diagnosis. This paper presents the development of a framework for integrated system of fault diagnosis in oil equipments based on neural networks. The framework employs a combination of technologies, including dynamic database, comprehensive knowledge base and neural networks. This paper describes how to represent fault diagnosis knowledge using the neural networks, and discusses design process of the inference engine based on fuzzy neural networks. The results demonstrate that the accuracy is higher using the proposed system for fault diagnosis in oil equipments, and it can meet real-time requirements of maintenance, so this system outperforms the traditional system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的石油设备故障诊断集成系统框架
传统的专家系统用于石油设备故障诊断时,存在知识获取困难、推理效率低、适应性差等问题。因此,提出将神经网络与专家系统相结合进行故障诊断。提出了一种基于神经网络的石油设备故障诊断综合系统框架。该框架结合了动态数据库、综合知识库和神经网络等技术。介绍了用神经网络表示故障诊断知识的方法,讨论了基于模糊神经网络的推理机的设计过程。结果表明,该系统用于石油设备故障诊断的准确率较高,能够满足维修的实时性要求,优于传统的故障诊断系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time virtual hand controlling using OpenSceneGraph Simulation research of direct torque open-loop control system based on MATLAB Based on the grey relation analysis of low producing oil well production application Application of Rapid Prototyping technology in equipment parts rapid manufacturing Two-way information exchange in two-level supply chain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1