{"title":"DisGB: Using Geo-Context Information for Efficient Routing in Geo-Distributed Pub/Sub Systems","authors":"Jonathan Hasenburg, David Bermbach","doi":"10.1109/UCC48980.2020.00026","DOIUrl":null,"url":null,"abstract":"IoT data are usually exchanged via pub/sub, e.g., based on the MQTT protocol. Especially in the IoT, however, the relevance of data often depends on the geo-context, e.g., the location of data source and sink. In this paper, we propose two inter-broker routing strategies that use this characteristic for the selection of rendezvous points. We evaluate analytically and through experiments with a distributed pub/sub prototype which strategy is best suited in three IoT scenarios. Based on simulation, we compare the performance and efficiency of our approach to the state of the art: Our strategies reduce the event delivery latency by up to 22 times compared to the only alternative that sends slightly fewer messages. Our strategies also require significantly less inter-broker messages than all other approaches while achieving at least the same performance.","PeriodicalId":125849,"journal":{"name":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC48980.2020.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
IoT data are usually exchanged via pub/sub, e.g., based on the MQTT protocol. Especially in the IoT, however, the relevance of data often depends on the geo-context, e.g., the location of data source and sink. In this paper, we propose two inter-broker routing strategies that use this characteristic for the selection of rendezvous points. We evaluate analytically and through experiments with a distributed pub/sub prototype which strategy is best suited in three IoT scenarios. Based on simulation, we compare the performance and efficiency of our approach to the state of the art: Our strategies reduce the event delivery latency by up to 22 times compared to the only alternative that sends slightly fewer messages. Our strategies also require significantly less inter-broker messages than all other approaches while achieving at least the same performance.