Modeling aggression propagation on social media

Q1 Social Sciences Online Social Networks and Media Pub Date : 2021-07-01 DOI:10.1016/j.osnem.2021.100137
Chrysoula Terizi , Despoina Chatzakou , Evaggelia Pitoura , Panayiotis Tsaparas , Nicolas Kourtellis
{"title":"Modeling aggression propagation on social media","authors":"Chrysoula Terizi ,&nbsp;Despoina Chatzakou ,&nbsp;Evaggelia Pitoura ,&nbsp;Panayiotis Tsaparas ,&nbsp;Nicolas Kourtellis","doi":"10.1016/j.osnem.2021.100137","DOIUrl":null,"url":null,"abstract":"<div><p><span>Cyberaggression has been studied in various contexts and online social platforms, and modeled on different data using state-of-the-art machine and deep learning algorithms to enable automatic detection and blocking of this behavior. Users can be influenced to act aggressively or even bully others because of elevated toxicity and aggression in their own (online) social circle. In effect, this behavior can propagate from one user and neighborhood to another, and therefore, spread in the network. Interestingly, to our knowledge, no work has modeled the network dynamics of aggressive behavior. In this paper, we take a first step towards this direction by studying propagation of aggression on social media using opinion dynamics. We propose ways to model how aggression may propagate from one user to another, depending on how each user is connected to other aggressive or regular users. Through extensive simulations on Twitter data, we study how aggressive behavior could propagate in the network. We validate our models with crawled and annotated ground truth data, reaching up to 80% </span><span><math><mrow><mi>A</mi><mi>U</mi><mi>C</mi></mrow></math></span>, and discuss the results and implications of our work.</p></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.osnem.2021.100137","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696421000215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 4

Abstract

Cyberaggression has been studied in various contexts and online social platforms, and modeled on different data using state-of-the-art machine and deep learning algorithms to enable automatic detection and blocking of this behavior. Users can be influenced to act aggressively or even bully others because of elevated toxicity and aggression in their own (online) social circle. In effect, this behavior can propagate from one user and neighborhood to another, and therefore, spread in the network. Interestingly, to our knowledge, no work has modeled the network dynamics of aggressive behavior. In this paper, we take a first step towards this direction by studying propagation of aggression on social media using opinion dynamics. We propose ways to model how aggression may propagate from one user to another, depending on how each user is connected to other aggressive or regular users. Through extensive simulations on Twitter data, we study how aggressive behavior could propagate in the network. We validate our models with crawled and annotated ground truth data, reaching up to 80% AUC, and discuss the results and implications of our work.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模仿社交媒体上的攻击性传播
网络攻击已经在各种背景和在线社交平台上进行了研究,并使用最先进的机器和深度学习算法对不同的数据进行了建模,以实现自动检测和阻止这种行为。用户可能会受到影响,表现出攻击性,甚至欺负他人,因为他们自己的(在线)社交圈中的毒性和攻击性增加了。实际上,这种行为可以从一个用户和邻居传播到另一个用户和邻居,因此,在网络中传播。有趣的是,据我们所知,还没有研究模拟攻击行为的网络动力学。在本文中,我们通过使用意见动态研究社交媒体上的攻击传播,朝着这个方向迈出了第一步。我们提出了建模攻击如何从一个用户传播到另一个用户的方法,这取决于每个用户如何连接到其他攻击或常规用户。通过对Twitter数据的大量模拟,我们研究了攻击性行为如何在网络中传播。我们用爬行和注释的地面真实数据验证了我们的模型,达到了80%的AUC,并讨论了我们工作的结果和意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
期刊最新文献
How does user-generated content on Social Media affect stock predictions? A case study on GameStop Measuring centralization of online platforms through size and interconnection of communities Crowdsourcing the Mitigation of disinformation and misinformation: The case of spontaneous community-based moderation on Reddit GASCOM: Graph-based Attentive Semantic Context Modeling for Online Conversation Understanding The influence of coordinated behavior on toxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1