Machine Learning-based Component Figures of Merit and Models for DC-DC Converter Design

Skye Reese, Thomas Byrd, J. Haddon, D. Maksimović
{"title":"Machine Learning-based Component Figures of Merit and Models for DC-DC Converter Design","authors":"Skye Reese, Thomas Byrd, J. Haddon, D. Maksimović","doi":"10.1109/DMC55175.2022.9906474","DOIUrl":null,"url":null,"abstract":"This paper is focused on a data-driven approach to capturing figures of merit and features of semiconductor switches and passive components used in switched-mode power converters. Extensive amounts of component data available on commercial distributor sites are gathered and processed to provide insights into relationships among component characteristics beyond what is commonly available in physics-based models. The data is used to train supervised regression machine learning (ML) models that can be used to predict component parameters. One practical use of these ML-based models is in an optimization tool that advises power converter designers on component selection to achieve an optimal specified objective function.","PeriodicalId":245908,"journal":{"name":"2022 IEEE Design Methodologies Conference (DMC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Design Methodologies Conference (DMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMC55175.2022.9906474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper is focused on a data-driven approach to capturing figures of merit and features of semiconductor switches and passive components used in switched-mode power converters. Extensive amounts of component data available on commercial distributor sites are gathered and processed to provide insights into relationships among component characteristics beyond what is commonly available in physics-based models. The data is used to train supervised regression machine learning (ML) models that can be used to predict component parameters. One practical use of these ML-based models is in an optimization tool that advises power converter designers on component selection to achieve an optimal specified objective function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的DC-DC变换器元件性能图与模型设计
本文的重点是一种数据驱动的方法,以捕获在开关模式电源转换器中使用的半导体开关和无源元件的优点和特征的数字。商业分销商站点上可用的大量组件数据被收集和处理,以提供对组件特征之间关系的见解,而不是基于物理的模型中通常可用的内容。这些数据用于训练可用于预测组件参数的监督回归机器学习(ML)模型。这些基于ml的模型的一个实际用途是在一个优化工具中,该工具建议电源转换器设计人员选择组件以实现最优的指定目标函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Preliminary Investigation into Approximating Power Transistor Switching Behavior using a Multilayer Perceptron Optimization Tool for the Characterization of Electric Vehicle Battery Packs Simplified Gain and Phase Margin PI Tuning Method for SPMSM Control Virtual PCB Layout Prototyping: Importance of Modeling Gate Driver and Parasitic Capacitances Antithetical Design Methodologies of Position-Free Transmitter Coils in Wireless Power Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1