Experimental Determination of the Static Equivalent Pressures of Detonative Explosions of Ethylene/O2/N2-Mixtures and Cyclohexane/O2/N2-Mixtures in Long and Short Pipes

H. Schildberg
{"title":"Experimental Determination of the Static Equivalent Pressures of Detonative Explosions of Ethylene/O2/N2-Mixtures and Cyclohexane/O2/N2-Mixtures in Long and Short Pipes","authors":"H. Schildberg","doi":"10.1115/PVP2018-84493","DOIUrl":null,"url":null,"abstract":"In the recent past (PVP2013-97677, PVP2014-28197, PVP2015-45286, PVP2016-63223) we had started to determine the static equivalent pressures (pstat) of the eight detonative pressure scenarios in long and short pipes for different detonable gas mixtures. The pstat-values are of vital importance for process design: by assigning static equivalent pressures to the highly dynamic detonative pressure peaks it is possible to apply the established pressure vessel guidelines, which can only cope with static loads, in the design of detonation pressure resistant pipes. In the previous publications the parameter R was defined as the ratio between pstat at the location where transition from deflagration to detonation occurs and pstat in the region of the stable detonation. One important finding was that R depends on the reactivity of the gas mixture. So far, R cannot be predicted from first principles or from combustion parameters, but can only be determined experimentally. The ratio R has a special significance, because it not only determines pstat for the Deflagration to Detonation Transition (DDT) in long pipes (first detonative pressure scenario), but also gives a good estimate for two of the three scenarios relevant in the design of short pipes: DDT and the coalescence of DDT and reflection.\n The present paper concludes the test series conducted at BASF during the last 4 years. It presents additional experimental data showing the variation of R over the entire detonative range of Ethylene/O2/N2 mixtures and along the stoichiometric line of Cyclohexane/O2/N2 mixtures. Based on the variation of R for these ternary mixtures and for the mixtures presented in the preceding publications, a typical variation of R for a general combustible/O2/N2-mixture is estimated over the entire explosive range. By means of this estimation the static equivalent pressures of the six design-relevant detonative pressure scenarios of any combustible/O2/N2-mixture can now be derived combining the parameter R with the Chapman-Jouguet pressure ratio, which can be calculated in a straightforward manner from thermodynamic properties.","PeriodicalId":275459,"journal":{"name":"Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: High-Pressure Technology; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Rudy Scavuzzo Student Paper Symposium and 26th Annual Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the recent past (PVP2013-97677, PVP2014-28197, PVP2015-45286, PVP2016-63223) we had started to determine the static equivalent pressures (pstat) of the eight detonative pressure scenarios in long and short pipes for different detonable gas mixtures. The pstat-values are of vital importance for process design: by assigning static equivalent pressures to the highly dynamic detonative pressure peaks it is possible to apply the established pressure vessel guidelines, which can only cope with static loads, in the design of detonation pressure resistant pipes. In the previous publications the parameter R was defined as the ratio between pstat at the location where transition from deflagration to detonation occurs and pstat in the region of the stable detonation. One important finding was that R depends on the reactivity of the gas mixture. So far, R cannot be predicted from first principles or from combustion parameters, but can only be determined experimentally. The ratio R has a special significance, because it not only determines pstat for the Deflagration to Detonation Transition (DDT) in long pipes (first detonative pressure scenario), but also gives a good estimate for two of the three scenarios relevant in the design of short pipes: DDT and the coalescence of DDT and reflection. The present paper concludes the test series conducted at BASF during the last 4 years. It presents additional experimental data showing the variation of R over the entire detonative range of Ethylene/O2/N2 mixtures and along the stoichiometric line of Cyclohexane/O2/N2 mixtures. Based on the variation of R for these ternary mixtures and for the mixtures presented in the preceding publications, a typical variation of R for a general combustible/O2/N2-mixture is estimated over the entire explosive range. By means of this estimation the static equivalent pressures of the six design-relevant detonative pressure scenarios of any combustible/O2/N2-mixture can now be derived combining the parameter R with the Chapman-Jouguet pressure ratio, which can be calculated in a straightforward manner from thermodynamic properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乙烯/O2/ n2混合物和环己烷/O2/ n2混合物长、短管道爆轰静当量压力的实验测定
在最近的一段时间里(PVP2013-97677, PVP2014-28197, PVP2015-45286, PVP2016-63223),我们已经开始在不同的可爆气体混合物的长、短管道中确定八种爆炸压力情景的静态等效压力(pstat)。pstat值对于工艺设计至关重要:通过为高动态爆轰压力峰值分配静态等效压力,可以在设计耐爆轰压力管道时应用仅能处理静态载荷的既定压力容器指南。在以前的出版物中,参数R被定义为爆燃到爆轰过渡发生位置的pstat与稳定爆轰区域的pstat之比。一个重要的发现是R取决于气体混合物的反应性。到目前为止,R还不能从第一性原理或燃烧参数来预测,只能通过实验来确定。比值R具有特殊的意义,因为它不仅决定了长管中爆燃爆轰转捩(DDT)的pstat(第一爆压情景),而且对短管设计中相关的三种情景中的两种:DDT和DDT与反射的聚并给出了很好的估计。本文总结了过去4年在巴斯夫进行的一系列试验。本文还提供了额外的实验数据,显示了R在乙烯/O2/N2混合物的整个爆轰范围内以及环己烷/O2/N2混合物的化学计量线上的变化。根据这些三元混合物和上述出版物中提出的混合物的R变化,在整个爆炸范围内估计一般可燃物/O2/ n2混合物的典型R变化。通过这种估计,现在可以将参数R与Chapman-Jouguet压力比相结合,推导出任何可燃/O2/ n2混合物的六种设计相关爆轰压力情景的静态等效压力,该压力比可以通过热力学性质直接计算出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Modified Microstructure-Based Creep Damage Model for Considering Prior Low Cycle Fatigue Damage Effects Defect Localization for Pressure Vessel Based on Circumferential Guided Waves: An Experimental Study Advanced High Strength Martensitic Stainless Steels for High Pressure Equipment The Effect of a Low Constraint Geometry on Measured T0 Values for a Nuclear Reactor Pressure Vessel Ferritic Steel Investigation Into Applications of Local Failure Criterion for X70 Pipeline With Corrosion Defect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1