A data-driven framework for uncertainty quantification of a fluidized bed

V. Kotteda, Anitha Kommu, Vinod Kumar
{"title":"A data-driven framework for uncertainty quantification of a fluidized bed","authors":"V. Kotteda, Anitha Kommu, Vinod Kumar","doi":"10.1109/HPEC.2019.8916467","DOIUrl":null,"url":null,"abstract":"We carried out a nondeterministic analysis of flow in a fluidized bed. The flow in the fluidized bed is simulated with National Energy Technology Laboratory’s open-source multiphase fluid dynamics suite MFiX. It does not possess tools for uncertainty quantification. Therefore, we developed a C++ wrapper to integrate an uncertainty quantification toolkit developed at Sandia National Laboratory with MFiX. The wrapper exchanges uncertain input parameters and key output parameters among Dakota and MFiX. However, a data-driven framework is also developed to obtain reliable statistics as it is not feasible to get them with MFiX integrated into Dakota, Dakota-MFiX. The data generated from Dakota-MFiX simulations, with the Latin Hypercube method of sampling size 500, is used to train a machine-learning algorithm. The trained and tested deep neural network algorithm is integrated with Dakota via the wrapper to obtain low order statistics of the bed height and pressure drop across the bed.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We carried out a nondeterministic analysis of flow in a fluidized bed. The flow in the fluidized bed is simulated with National Energy Technology Laboratory’s open-source multiphase fluid dynamics suite MFiX. It does not possess tools for uncertainty quantification. Therefore, we developed a C++ wrapper to integrate an uncertainty quantification toolkit developed at Sandia National Laboratory with MFiX. The wrapper exchanges uncertain input parameters and key output parameters among Dakota and MFiX. However, a data-driven framework is also developed to obtain reliable statistics as it is not feasible to get them with MFiX integrated into Dakota, Dakota-MFiX. The data generated from Dakota-MFiX simulations, with the Latin Hypercube method of sampling size 500, is used to train a machine-learning algorithm. The trained and tested deep neural network algorithm is integrated with Dakota via the wrapper to obtain low order statistics of the bed height and pressure drop across the bed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流化床不确定度量化的数据驱动框架
我们对流化床中的流动进行了不确定性分析。利用国家能源技术实验室多相流体动力学软件MFiX对流化床内的流动进行了模拟。它不具备不确定度量化的工具。因此,我们开发了一个c++包装器,将桑迪亚国家实验室开发的不确定性量化工具包与MFiX集成在一起。包装器在Dakota和MFiX之间交换不确定的输入参数和关键的输出参数。然而,由于无法将MFiX集成到Dakota, Dakota-MFiX中,因此还开发了一个数据驱动的框架来获得可靠的统计数据。从Dakota-MFiX模拟中生成的数据,采用拉丁超立方体方法,采样大小为500,用于训练机器学习算法。经过训练和测试的深度神经网络算法通过包装器与Dakota集成,以获得床层高度和床层压降的低阶统计数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1