An Encryption Method of Convmixer Models without Performance Degradation

Ryota Iijima, H. Kiya
{"title":"An Encryption Method of Convmixer Models without Performance Degradation","authors":"Ryota Iijima, H. Kiya","doi":"10.1109/ICMLC56445.2022.9941283","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an encryption method for ConvMixer models with a secret key. Encryption methods for DNN models have been studied to achieve adversarial defense, model protection and privacy-preserving image classification. However, the use of conventional encryption methods degrades the performance of models compared with that of plain models. Accordingly, we propose a novel method for encrypting ConvMixer models. The method is carried out on the basis of an embedding architecture that ConvMixer has, and models encrypted with the method can have the same performance as models trained with plain images only when using test images encrypted with a secret key. In addition, the proposed method does not require any specially prepared data for model training or network modification. In an experiment, the effectiveness of the proposed method is evaluated in terms of classification accuracy and model protection in an image classification task on the CIFAR10 dataset.","PeriodicalId":117829,"journal":{"name":"2022 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC56445.2022.9941283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose an encryption method for ConvMixer models with a secret key. Encryption methods for DNN models have been studied to achieve adversarial defense, model protection and privacy-preserving image classification. However, the use of conventional encryption methods degrades the performance of models compared with that of plain models. Accordingly, we propose a novel method for encrypting ConvMixer models. The method is carried out on the basis of an embedding architecture that ConvMixer has, and models encrypted with the method can have the same performance as models trained with plain images only when using test images encrypted with a secret key. In addition, the proposed method does not require any specially prepared data for model training or network modification. In an experiment, the effectiveness of the proposed method is evaluated in terms of classification accuracy and model protection in an image classification task on the CIFAR10 dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种无性能退化的卷积混合模型加密方法
本文提出了一种带密钥的ConvMixer模型加密方法。研究了DNN模型的加密方法,以实现对抗性防御、模型保护和保护隐私的图像分类。然而,与普通模型相比,使用常规加密方法会降低模型的性能。据此,我们提出了一种对ConvMixer模型进行加密的新方法。该方法基于ConvMixer所具有的嵌入体系结构实现,使用该方法加密的模型只有在使用使用密钥加密的测试图像时才能具有与使用普通图像训练的模型相同的性能。此外,该方法不需要任何专门准备的数据进行模型训练或网络修改。在CIFAR10数据集的图像分类任务中,从分类精度和模型保护两个方面对该方法的有效性进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Semantic Segmentation for Vectorization of Line Drawings Based on Deep Neural Networks Real-Time Vehicle Counting by Deep-Learning Networks Unsupervised Representation Learning Method In Sensor Based Human Activity Recognition Improvement and Evaluation of Object Shape Presentation System Using Linear Actuators Examination of Analysis Methods for E-Learning System Grade Data Using Formal Concept Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1