S. B. Martins, Guilherme C. S. Ruppert, F. Reis, C. L. Yasuda, A. Falcão
{"title":"A Supervoxel-Based Approach for Unsupervised Abnormal Asymmetry Detection in Mr Images of the Brain","authors":"S. B. Martins, Guilherme C. S. Ruppert, F. Reis, C. L. Yasuda, A. Falcão","doi":"10.1109/ISBI.2019.8759166","DOIUrl":null,"url":null,"abstract":"Several pathologies are associated with abnormal asymmetries in brain images and their automated detection can improve diagnosis, segmentation, and automatic analysis of abnormal brain tissues (e.g., lesions). In this paper, we introduce a fully unsupervised supervoxel-based approach for abnormal asymmetry detection in MR images of the brain. Also, we present a new method for symmetrical supervoxel extraction called SymmISF. The experiments over a large set of MR-TI images reveal a higher detection rates and considerably less false positives in comparison to a deep learning auto-encoder approach.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Several pathologies are associated with abnormal asymmetries in brain images and their automated detection can improve diagnosis, segmentation, and automatic analysis of abnormal brain tissues (e.g., lesions). In this paper, we introduce a fully unsupervised supervoxel-based approach for abnormal asymmetry detection in MR images of the brain. Also, we present a new method for symmetrical supervoxel extraction called SymmISF. The experiments over a large set of MR-TI images reveal a higher detection rates and considerably less false positives in comparison to a deep learning auto-encoder approach.