Resource-Allocating Codebook for patch-based face recognition

A. Ramanan, M. Niranjan
{"title":"Resource-Allocating Codebook for patch-based face recognition","authors":"A. Ramanan, M. Niranjan","doi":"10.1109/ICIINFS.2009.5429854","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach to constructing a discriminant visual codebook in a simple and extremely fast way as a one-pass, that we call Resource-Allocating Codebook (RAC), inspired by the Resource Allocating Network (RAN) algorithms developed in the artificial neural networks literature. Unlike density preserving clustering, this approach retains data spread out more widely in the input space, thereby including rare low level features in the codebook. We show that the codebook constructed by the RAC technique outperforms the codebook constructed by K-means clustering in recognition performance and computation on two standard face databases, namely the AT&T and Yale faces, performed with SIFT features.","PeriodicalId":117199,"journal":{"name":"2009 International Conference on Industrial and Information Systems (ICIIS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2009.5429854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we propose a novel approach to constructing a discriminant visual codebook in a simple and extremely fast way as a one-pass, that we call Resource-Allocating Codebook (RAC), inspired by the Resource Allocating Network (RAN) algorithms developed in the artificial neural networks literature. Unlike density preserving clustering, this approach retains data spread out more widely in the input space, thereby including rare low level features in the codebook. We show that the codebook constructed by the RAC technique outperforms the codebook constructed by K-means clustering in recognition performance and computation on two standard face databases, namely the AT&T and Yale faces, performed with SIFT features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于补丁的人脸识别资源分配码本
本文受人工神经网络文献中资源分配网络(RAN)算法的启发,提出了一种新的方法,以一种简单而极快的方式构建一个判别视觉码本,我们称之为资源分配码本(RAC)。与保持密度的聚类不同,这种方法保留了在输入空间中更广泛分布的数据,从而包括了码本中罕见的低级特征。我们证明RAC技术构建的码本在识别性能和计算上优于K-means聚类构建的码本,在两个标准人脸数据库(即AT&T和Yale人脸)上执行SIFT特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Resource-Allocating Codebook for patch-based face recognition HVDC transmission line for interconnecting power grids in India and Sri Lanka Case study of WSN as a replacement for SCADA An end to end correctness verification approach for application specific usage control An autonomous distributed vehicle-to-grid control of grid-connected electric vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1