Spin-Torque-Oscillator Designs in Microwave-Assisted Magnetic Recording

Wenyu Chen, Zhenyao Tang, A. Kaizu, S. Kawasaki, Kevin L.L. Man, Cathy S.Y. Mo, T. Roppongi, M. Dovek
{"title":"Spin-Torque-Oscillator Designs in Microwave-Assisted Magnetic Recording","authors":"Wenyu Chen, Zhenyao Tang, A. Kaizu, S. Kawasaki, Kevin L.L. Man, Cathy S.Y. Mo, T. Roppongi, M. Dovek","doi":"10.1109/TMRC56419.2022.9918546","DOIUrl":null,"url":null,"abstract":"With the requirement of increasing data areal density in hard disk drive applications, microwave assisted magnetic recording (MAMR) [1] has become one of the effective approaches that reduce recording bit size. By incorporating a spin torque oscillator (STO) device in the write gap (WG) between the main writer pole (MP) and the write shield (WS), one or more large magnetic moment layers, called field generation layers (FGL), are driven into large angle oscillations, by the spin-transfer-torque (STT) interactions with the adjacent spin injection layers (SIL), for a sufficiently large radiofrequency (rf) field output to the recording media. A dual oscillator design [2], shown in Fig. 1(a) was proposed recently with a pair of FGLs oscillating out of phase so that the detrimental component of the rf field [3] perpendicular to the air bearing surface (ABS) is mostly canceled, but the component in the direction along the written track is enhanced. Micromagnetic simulations of the magnetic device inside the WG were conducted incorporating STT interactions between the magnetic layers. Simulation and measurement results of different dual oscillator designs will be discussed in this talk.","PeriodicalId":432413,"journal":{"name":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 33rd Magnetic Recording Conference (TMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMRC56419.2022.9918546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the requirement of increasing data areal density in hard disk drive applications, microwave assisted magnetic recording (MAMR) [1] has become one of the effective approaches that reduce recording bit size. By incorporating a spin torque oscillator (STO) device in the write gap (WG) between the main writer pole (MP) and the write shield (WS), one or more large magnetic moment layers, called field generation layers (FGL), are driven into large angle oscillations, by the spin-transfer-torque (STT) interactions with the adjacent spin injection layers (SIL), for a sufficiently large radiofrequency (rf) field output to the recording media. A dual oscillator design [2], shown in Fig. 1(a) was proposed recently with a pair of FGLs oscillating out of phase so that the detrimental component of the rf field [3] perpendicular to the air bearing surface (ABS) is mostly canceled, but the component in the direction along the written track is enhanced. Micromagnetic simulations of the magnetic device inside the WG were conducted incorporating STT interactions between the magnetic layers. Simulation and measurement results of different dual oscillator designs will be discussed in this talk.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微波辅助磁记录中的自旋-转矩振荡器设计
随着硬盘应用对数据面密度的要求越来越高,微波辅助磁记录(MAMR)[1]已成为减小记录比特大小的有效方法之一。通过在主写极(MP)和写屏蔽(WS)之间的写间隙(WG)中加入一个自旋扭矩振荡器(STO)装置,通过自旋传递扭矩(STT)与相邻的自旋注入层(SIL)的相互作用,一个或多个称为场产生层(FGL)的大磁矩层被驱动成大角度振荡,从而向记录介质输出足够大的射频(rf)场。如图1(A)所示,最近提出了一种双振荡器设计[2],其中一对FGLs非相振荡,从而使垂直于空气轴承面(ABS)的rf场[3]的有害分量大部分被抵消,但沿写入轨迹方向的分量得到增强。利用磁层之间的STT相互作用,对WG内部的磁性器件进行了微磁模拟。本讲座将讨论不同双振荡器设计的仿真和测量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Spin Hall Angle doped BiSbX Topological Insulators using novel high resistive growth and migration barrier layers TMRC 2022 Program CD Molecular dynamic simulation on the adsorption between D-4OH lubricant and amorphous carbon film for HAMR disk Front Page Magneto-Ionic Control of Spin Textures and Interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1