{"title":"Enhanced Representation with Contrastive Loss for Long-Tail Query Classification in e-commerce","authors":"Lvxing Zhu, Hao Chen, Chao Wei, Weiru Zhang","doi":"10.18653/v1/2022.ecnlp-1.17","DOIUrl":null,"url":null,"abstract":"Query classification is a fundamental task in an e-commerce search engine, which assigns one or multiple predefined product categories in response to each search query. Taking click-through logs as training data in deep learning methods is a common and effective approach for query classification. However, the frequency distribution of queries typically has long-tail property, which means that there are few logs for most of the queries. The lack of reliable user feedback information results in worse performance of long-tail queries compared with frequent queries. To solve the above problem, we propose a novel method that leverages an auxiliary module to enhance the representations of long-tail queries by taking advantage of reliable supervised information of variant frequent queries. The long-tail queries are guided by the contrastive loss to obtain category-aligned representations in the auxiliary module, where the variant frequent queries serve as anchors in the representation space. We train our model with real-world click data from AliExpress and conduct evaluation on both offline labeled data and online AB test. The results and further analysis demonstrate the effectiveness of our proposed method.","PeriodicalId":384006,"journal":{"name":"Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Fifth Workshop on e-Commerce and NLP (ECNLP 5)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.ecnlp-1.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Query classification is a fundamental task in an e-commerce search engine, which assigns one or multiple predefined product categories in response to each search query. Taking click-through logs as training data in deep learning methods is a common and effective approach for query classification. However, the frequency distribution of queries typically has long-tail property, which means that there are few logs for most of the queries. The lack of reliable user feedback information results in worse performance of long-tail queries compared with frequent queries. To solve the above problem, we propose a novel method that leverages an auxiliary module to enhance the representations of long-tail queries by taking advantage of reliable supervised information of variant frequent queries. The long-tail queries are guided by the contrastive loss to obtain category-aligned representations in the auxiliary module, where the variant frequent queries serve as anchors in the representation space. We train our model with real-world click data from AliExpress and conduct evaluation on both offline labeled data and online AB test. The results and further analysis demonstrate the effectiveness of our proposed method.