Classification Of Tomato Maturity Levels Based on RGB And HSV Colors Using KNN Algorithm

Lidya Ningsih, P. Cholidhazia
{"title":"Classification Of Tomato Maturity Levels Based on RGB And HSV Colors Using KNN Algorithm","authors":"Lidya Ningsih, P. Cholidhazia","doi":"10.31004/riggs.v1i1.10","DOIUrl":null,"url":null,"abstract":"Tomatoes (Lycopersiconeculentum Mill) are vegetables that are widely produced in tropical and subtropic areas. Accordingto (Harllee) tomatoes are grouped into 6 levels of maturity, namely green, breakers, turning, pink, light red, and red. One waythat can be used to classify the level of maturity of tomatoes in the field of informatics is to utilize digital image processingtechniques. This study classifies the maturity of tomatoes using K-Nearest Neighbor (KNN) based on the Red Green Blue andHue Saturation Value color features. The KNN algorithm was chosen as a classification algorithm because KNN is quite simplewith good accuracy based on the minimum distance using Euclidean Distance. The research conducted received the highestaccuracy result of 91.25% at the value of K = 7 with the test data 80. This shows that the KNN algorithm successfully classifiedthe maturity of tomatoes by utilizing the color image of RGB and HSV.","PeriodicalId":354426,"journal":{"name":"RIGGS: Journal of Artificial Intelligence and Digital Business","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIGGS: Journal of Artificial Intelligence and Digital Business","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31004/riggs.v1i1.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tomatoes (Lycopersiconeculentum Mill) are vegetables that are widely produced in tropical and subtropic areas. Accordingto (Harllee) tomatoes are grouped into 6 levels of maturity, namely green, breakers, turning, pink, light red, and red. One waythat can be used to classify the level of maturity of tomatoes in the field of informatics is to utilize digital image processingtechniques. This study classifies the maturity of tomatoes using K-Nearest Neighbor (KNN) based on the Red Green Blue andHue Saturation Value color features. The KNN algorithm was chosen as a classification algorithm because KNN is quite simplewith good accuracy based on the minimum distance using Euclidean Distance. The research conducted received the highestaccuracy result of 91.25% at the value of K = 7 with the test data 80. This shows that the KNN algorithm successfully classifiedthe maturity of tomatoes by utilizing the color image of RGB and HSV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RGB和HSV颜色的番茄成熟度KNN分类
番茄(蕃茄)是一种在热带和亚热带地区广泛生产的蔬菜。根据Harllee的说法,西红柿的成熟度分为6个等级,分别是绿色、破碎、转折、粉红色、淡红色和红色。在信息学领域,利用数字图像处理技术对番茄的成熟度进行分类是一种方法。本研究利用基于红绿蓝和色相饱和度值颜色特征的k -最近邻(KNN)方法对番茄的成熟度进行分类。选择KNN算法作为分类算法,因为KNN算法非常简单,并且基于欧几里得距离的最小距离具有良好的准确率。本研究在K = 7时,测试数据为80,准确率最高,达到91.25%。这表明KNN算法利用RGB和HSV的彩色图像成功地对番茄的成熟度进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Broad Impact of AI Technologies on Student Engagement and Academic Performance in University Settings in Afghanistan ERP-Based Management Information System for MSMEs in Indonesia: A Systematic Literature Review The Effect of Physical Work Environment, Personality and Fairness on Employee Performance at PT Sinar Jaya Visualization of Tourism Site Visit Levels in Karo Regency Using Tableau The Influence of Lifestyle, Product Quality and Price on Beef Purchasing Decisions at the Lubuk Basung – Geragahan Union Market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1