BER Analysis of Different Lattice Reduction Aided Multi User-Massive MIMO Detection Techniques

Annu Singh, S. Joshi
{"title":"BER Analysis of Different Lattice Reduction Aided Multi User-Massive MIMO Detection Techniques","authors":"Annu Singh, S. Joshi","doi":"10.1109/SMART50582.2020.9336797","DOIUrl":null,"url":null,"abstract":"The escalating demand for higher data rate and to provide service to multiple users simultaneously has increased the challenge of efficient spectrum utilization. The two important technologies required in 5G is Mmwave and Massive MIMO to use the benefit of wider bandwidth of mmwave and to mitigate interference using Massive MIMO Technology. In this paper we compare the BER (Bit Error Rate) of different LR (Lattice Reduction) aided Massive MIMO detection technique at 28GHz frequency. We use the QR decomposition as a preprocessing step in the entire MIMO detector. LRA (Lattice Reduction Aided) detectors performance-complexity tradeoff factor δ, (δ=3/4). Scattering Channel Model is used with 100 numbers of scatterers. We employ the different MIMO configuration, modulation techniques, multiple number of users, single and multiple data stream per user to compare and analyze the BER (Bit Error Rate) results. The results are analyzed for Brun's algorithm, Lenstra Lenstra Lovasz (LLL) algorithm, Complex LLL(CLLL) algorithm, Fixed Complexity LLL (fc-LLL) Algorithm, Efficient LLL(ELLL) Algorithm, Possible Swap LLL Algorithm (PSLLL), Greedy LLL algorithm, and LLL-MMSE algorithm.","PeriodicalId":129946,"journal":{"name":"2020 9th International Conference System Modeling and Advancement in Research Trends (SMART)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 9th International Conference System Modeling and Advancement in Research Trends (SMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMART50582.2020.9336797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating demand for higher data rate and to provide service to multiple users simultaneously has increased the challenge of efficient spectrum utilization. The two important technologies required in 5G is Mmwave and Massive MIMO to use the benefit of wider bandwidth of mmwave and to mitigate interference using Massive MIMO Technology. In this paper we compare the BER (Bit Error Rate) of different LR (Lattice Reduction) aided Massive MIMO detection technique at 28GHz frequency. We use the QR decomposition as a preprocessing step in the entire MIMO detector. LRA (Lattice Reduction Aided) detectors performance-complexity tradeoff factor δ, (δ=3/4). Scattering Channel Model is used with 100 numbers of scatterers. We employ the different MIMO configuration, modulation techniques, multiple number of users, single and multiple data stream per user to compare and analyze the BER (Bit Error Rate) results. The results are analyzed for Brun's algorithm, Lenstra Lenstra Lovasz (LLL) algorithm, Complex LLL(CLLL) algorithm, Fixed Complexity LLL (fc-LLL) Algorithm, Efficient LLL(ELLL) Algorithm, Possible Swap LLL Algorithm (PSLLL), Greedy LLL algorithm, and LLL-MMSE algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同晶格约简辅助多用户海量MIMO检测技术的误码率分析
对更高数据速率和同时向多用户提供服务的需求日益增长,对频谱的高效利用提出了挑战。5G所需的两项重要技术是毫米波和大规模MIMO,以利用毫米波更宽的带宽优势,并使用大规模MIMO技术减轻干扰。本文比较了28GHz频率下不同的LR (Lattice Reduction)辅助大规模MIMO检测技术的误码率(BER)。我们将QR分解作为整个MIMO检测器的预处理步骤。LRA (Lattice Reduction Aided)探测器性能复杂度权衡因子δ, (δ=3/4)。散射通道模型采用100个散射体。我们采用不同的MIMO配置、调制技术、多个用户数量、每个用户的单数据流和多个数据流来比较和分析误码率(BER)结果。对brown算法、Lenstra Lenstra Lovasz (LLL)算法、Complex LLL(CLLL)算法、Fixed Complexity LLL(fc-LLL)算法、Efficient LLL(ell)算法、Possible Swap LLL算法(PSLLL)、Greedy LLL算法和ll - mmse算法进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oral Disease Detection using Neural Network A Review on Effectiveness of Artificial Intelligence Techniques in the Detection of COVID-19 Accident Avoidance Simulation using SUMO Gesture-Based Model of Mixed Reality Human-Computer Interface The Survey of Digital Image Analysis with Artificial Intelligence- DCNN Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1