{"title":"Value-at-Risk Prediction Using Option-Implied Risk Measures","authors":"Kai Schindelhauer, Chen Zhou","doi":"10.2139/ssrn.3279398","DOIUrl":null,"url":null,"abstract":"This paper investigates the prediction of Value-at-Risk (VaR) using option-implied information obtained by the maximum entropy method. The maximum entropy method provides an estimate of the risk-neutral distribution based on option prices. Besides commonly used implied volatility, we obtain implied skewness, kurtosis and quantile from the estimated risk-neutral distribution. We find that using the implied volatility and implied quantile as explanatory variables significantly outperforms considered benchmarks in predicting the VaR, including the commonly used GARCH(1,1)-model. This holds for all considered VaR prediction models and VaR probability levels. Overall, a simple quantile regression model performs best for all considered VaR probability levels and forecast horizons.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3279398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper investigates the prediction of Value-at-Risk (VaR) using option-implied information obtained by the maximum entropy method. The maximum entropy method provides an estimate of the risk-neutral distribution based on option prices. Besides commonly used implied volatility, we obtain implied skewness, kurtosis and quantile from the estimated risk-neutral distribution. We find that using the implied volatility and implied quantile as explanatory variables significantly outperforms considered benchmarks in predicting the VaR, including the commonly used GARCH(1,1)-model. This holds for all considered VaR prediction models and VaR probability levels. Overall, a simple quantile regression model performs best for all considered VaR probability levels and forecast horizons.