{"title":"Traction Control System for EV Based on Modified Maximum Transmissible Torque Estimation","authors":"Ziyou Song, Jianqiu Li, Liangfei Xu, M. Ouyang","doi":"10.1109/VPPC.2013.6671724","DOIUrl":null,"url":null,"abstract":"Traction control system (TCS) of electric vehicles (EVs) without detecting vehicle velocity is drawing more and more attention. The most challenging problem in TCS is controlling the drive wheel with indirect control inputs. The maximum transmissible torque estimation (MTTE) method which is effective in terms of antiskid control has been proposed, however, this method is conservative because it cannot take sufficient advantage of adhesive force under constant torque condition even if the road is slippery. Therefore, a modified maximum transmissible torque estimation (M-MTTE) algorithm with a various relaxation factor is proposed in this paper. By analyzing and comparing the simulation results with prior control method, it is validated that M-MTTE is robust on antiskid control and achieves a better acceleration control effect.","PeriodicalId":119598,"journal":{"name":"2013 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2013.6671724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Traction control system (TCS) of electric vehicles (EVs) without detecting vehicle velocity is drawing more and more attention. The most challenging problem in TCS is controlling the drive wheel with indirect control inputs. The maximum transmissible torque estimation (MTTE) method which is effective in terms of antiskid control has been proposed, however, this method is conservative because it cannot take sufficient advantage of adhesive force under constant torque condition even if the road is slippery. Therefore, a modified maximum transmissible torque estimation (M-MTTE) algorithm with a various relaxation factor is proposed in this paper. By analyzing and comparing the simulation results with prior control method, it is validated that M-MTTE is robust on antiskid control and achieves a better acceleration control effect.