Vachan Kumar, R. Nashed, K. Brenner, Romeil Sandhu, A. Naeemi
{"title":"System level analysis and benchmarking of graphene interconnects for low-power applications","authors":"Vachan Kumar, R. Nashed, K. Brenner, Romeil Sandhu, A. Naeemi","doi":"10.1109/ISEMC.2014.6898968","DOIUrl":null,"url":null,"abstract":"Stochastic wiring distribution models are used to predict the improvement in energy obtained by replacing a few or all copper metal levels with graphene nanoribbons (GNRs) in a low-power digital circuit. The models developed here also estimate the degradation in the performance by replacing a few or all copper metal levels with GNRs. Replacing a few local copper interconnect levels with GNRs is expected to reduce the energy consumed by local interconnects, without severely degrading the performance of longer global interconnects. The hybrid GNR+copper interconnect is shown to perform worse compared to the all GNR interconnect, if the length of the GNR segment is greater than a critical value. For a logic circuit with 30k gates, it is shown that the hybrid interconnect offers a 30 to 40% decrease in energy and a 4× decrease in maximum frequency, whereas the all GNR interconnect offers a 50 to 60% decrease in energy and a 7× decrease in maximum frequency. Further, the impact of edge doping on the resistance per unit length of graphene is analyzed.","PeriodicalId":279929,"journal":{"name":"2014 IEEE International Symposium on Electromagnetic Compatibility (EMC)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Electromagnetic Compatibility (EMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2014.6898968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Stochastic wiring distribution models are used to predict the improvement in energy obtained by replacing a few or all copper metal levels with graphene nanoribbons (GNRs) in a low-power digital circuit. The models developed here also estimate the degradation in the performance by replacing a few or all copper metal levels with GNRs. Replacing a few local copper interconnect levels with GNRs is expected to reduce the energy consumed by local interconnects, without severely degrading the performance of longer global interconnects. The hybrid GNR+copper interconnect is shown to perform worse compared to the all GNR interconnect, if the length of the GNR segment is greater than a critical value. For a logic circuit with 30k gates, it is shown that the hybrid interconnect offers a 30 to 40% decrease in energy and a 4× decrease in maximum frequency, whereas the all GNR interconnect offers a 50 to 60% decrease in energy and a 7× decrease in maximum frequency. Further, the impact of edge doping on the resistance per unit length of graphene is analyzed.