Gaussian Activation Function Realization with Application to the Neural Network Implementations

H. A. Yildiz
{"title":"Gaussian Activation Function Realization with Application to the Neural Network Implementations","authors":"H. A. Yildiz","doi":"10.1109/SIU49456.2020.9302124","DOIUrl":null,"url":null,"abstract":"A CMOS Gaussian function generator circuit suitable for the implementation of analog neural networks is proposed. For this purpose, it is considered the polynomial approximation of the Gaussian function. The proposed circuit realizes the Gaussian function characteristic inherently, that is without requiring any accurate tuning or adjustment of the circuit parameters. In order to show the usefulness of the proposed circuit, simulation results obtained using Spectre Simulation tool in Cadence design environment are provided. These results show the validity of the theoretical analysis and feasibility of the proposed structure.","PeriodicalId":312627,"journal":{"name":"2020 28th Signal Processing and Communications Applications Conference (SIU)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU49456.2020.9302124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A CMOS Gaussian function generator circuit suitable for the implementation of analog neural networks is proposed. For this purpose, it is considered the polynomial approximation of the Gaussian function. The proposed circuit realizes the Gaussian function characteristic inherently, that is without requiring any accurate tuning or adjustment of the circuit parameters. In order to show the usefulness of the proposed circuit, simulation results obtained using Spectre Simulation tool in Cadence design environment are provided. These results show the validity of the theoretical analysis and feasibility of the proposed structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高斯激活函数的实现及其在神经网络中的应用
提出了一种适用于模拟神经网络实现的CMOS高斯函数产生电路。出于这个目的,它被认为是高斯函数的多项式近似。该电路固有地实现了高斯函数特性,即不需要对电路参数进行任何精确的调谐或调整。为了说明所提电路的实用性,给出了在Cadence设计环境下使用Spectre仿真工具所获得的仿真结果。这些结果表明了理论分析的有效性和所提出结构的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Skin Lesion Classification With Deep CNN Ensembles Design of a New System for Upper Extremity Movement Ability Assessment Stock Market Prediction with Stacked Autoencoder Based Feature Reduction Segmentation networks reinforced with attribute profiles for large scale land-cover map production Encoded Deep Features for Visual Place Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1