{"title":"NES-SOURCE: Indoor small-scale wireless control network protocol that has a communication failure point avoidance function","authors":"Yasutaka Kawamoto, Y. Kado","doi":"10.1109/TRONSHOW.2016.7842884","DOIUrl":null,"url":null,"abstract":"Wireless control network require delay guarantees and low packet error rates. The reason for communication delay and error is packet loss, and TDMA is used by many wireless control network technologies to avoid packet loss. However, TDMA protocols are difficult to implement. Besides, TDMA cannot avoid communication failure points due to changes in the environment caused by human intervention. We propose NES-SOURCE as a CSMA/CA based control network protocol. NES-SOURCE uses a source routing protocol, and if the NES-SOURCE node fails to communicate using primary route, the node avoid the communication failure point by to use secondary bypass route. NES-SOURCE is a low delay protocol. The reason is that NES-SOURCE can change the communication route at high speed. In addition, NES-SOUCE is implemented using a protocol stack that is compatible with IEEE 802.15.4 g. We show that NES-SOURCE systems can be used for wireless control network systems, and in an environment where people moving are in and out, path change is more advantageous than retransmission from the point of view of the packet error rate.","PeriodicalId":106591,"journal":{"name":"2016 TRON Symposium (TRONSHOW)","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 TRON Symposium (TRONSHOW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRONSHOW.2016.7842884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Wireless control network require delay guarantees and low packet error rates. The reason for communication delay and error is packet loss, and TDMA is used by many wireless control network technologies to avoid packet loss. However, TDMA protocols are difficult to implement. Besides, TDMA cannot avoid communication failure points due to changes in the environment caused by human intervention. We propose NES-SOURCE as a CSMA/CA based control network protocol. NES-SOURCE uses a source routing protocol, and if the NES-SOURCE node fails to communicate using primary route, the node avoid the communication failure point by to use secondary bypass route. NES-SOURCE is a low delay protocol. The reason is that NES-SOURCE can change the communication route at high speed. In addition, NES-SOUCE is implemented using a protocol stack that is compatible with IEEE 802.15.4 g. We show that NES-SOURCE systems can be used for wireless control network systems, and in an environment where people moving are in and out, path change is more advantageous than retransmission from the point of view of the packet error rate.