Reliability of Large Scale GPU Clusters for Deep Learning Workloads

Junjie Qian, Taeyoon Kim, Myeongjae Jeon
{"title":"Reliability of Large Scale GPU Clusters for Deep Learning Workloads","authors":"Junjie Qian, Taeyoon Kim, Myeongjae Jeon","doi":"10.1145/3442442.3452056","DOIUrl":null,"url":null,"abstract":"Recent advances on deep learning technologies have made GPU clusters popular as training platforms. In this paper, we study reliability issues while focusing on training job failures from analyzing logs collected from running deep learning workloads on a large-scale GPU cluster in production. These failures are largely grouped into two categories, infrastructure and user, based on their sources, and reveal diverse reasons causing the failures. With insights obtained from the failure analysis, we suggest several different ways to improve the stability of shared GPU clusters designed for DL training and optimize user experience by reducing failure occurrences.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3452056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Recent advances on deep learning technologies have made GPU clusters popular as training platforms. In this paper, we study reliability issues while focusing on training job failures from analyzing logs collected from running deep learning workloads on a large-scale GPU cluster in production. These failures are largely grouped into two categories, infrastructure and user, based on their sources, and reveal diverse reasons causing the failures. With insights obtained from the failure analysis, we suggest several different ways to improve the stability of shared GPU clusters designed for DL training and optimize user experience by reducing failure occurrences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向深度学习工作负载的大规模GPU集群可靠性研究
深度学习技术的最新进展使GPU集群成为流行的训练平台。在本文中,我们研究了可靠性问题,同时通过分析在生产中的大规模GPU集群上运行深度学习工作负载收集的日志来关注训练作业失败。这些故障根据其来源大致分为基础设施和用户两类,并揭示了导致故障的各种原因。根据从故障分析中获得的见解,我们提出了几种不同的方法来提高为深度学习训练设计的共享GPU集群的稳定性,并通过减少故障发生来优化用户体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Do I Trust this Stranger? Generalized Trust and the Governance of Online Communities Explainable Demand Forecasting: A Data Mining Goldmine Tracing the Factoids: the Anatomy of Information Re-organization in Wikipedia Articles AI Principles in Identifying Toxicity in Online Conversation: Keynote at the Third Workshop on Fairness, Accountability, Transparency, Ethics and Society on the Web Fairness beyond “equal”: The Diversity Searcher as a Tool to Detect and Enhance the Representation of Socio-political Actors in News Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1