{"title":"Shunting networks for multi-band AM-FM-decomposition","authors":"R. Baxter, T. Quatieri","doi":"10.1109/ASPAA.1999.810891","DOIUrl":null,"url":null,"abstract":"We describe a transduction-based, neurodynamic approach to estimating the amplitude-modulated (AM) and frequency-modulated (FM) components of a signal. We show that the transduction approach can be realized as a bank of constant-Q bandpass filters followed by envelope detectors and shunting neural networks, and the resulting dynamical system is capable of robust AM-FM estimation. Our model is consistent with previous psychophysical experiments that indicate AM and FM components of acoustic signals may be transformed into a common neural code in the brain stem via FM-to-AM transduction (Saberi and Hafter 1995). The shunting network for AM-FM decomposition is followed by a contrast enhancement shunting network that provides a mechanism for robustly selecting auditory filter channels as the FM of an input stimulus sweeps across the multiple filters. The AM-FM output of the shunting networks may provide a robust feature representation and is being considered for applications in signal recognition and multi-component decomposition problems.","PeriodicalId":229733,"journal":{"name":"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPAA.1999.810891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We describe a transduction-based, neurodynamic approach to estimating the amplitude-modulated (AM) and frequency-modulated (FM) components of a signal. We show that the transduction approach can be realized as a bank of constant-Q bandpass filters followed by envelope detectors and shunting neural networks, and the resulting dynamical system is capable of robust AM-FM estimation. Our model is consistent with previous psychophysical experiments that indicate AM and FM components of acoustic signals may be transformed into a common neural code in the brain stem via FM-to-AM transduction (Saberi and Hafter 1995). The shunting network for AM-FM decomposition is followed by a contrast enhancement shunting network that provides a mechanism for robustly selecting auditory filter channels as the FM of an input stimulus sweeps across the multiple filters. The AM-FM output of the shunting networks may provide a robust feature representation and is being considered for applications in signal recognition and multi-component decomposition problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多频带am - fm分解的分流网络
我们描述了一种基于转导的神经动力学方法来估计信号的调幅(AM)和调频(FM)成分。我们证明了这种转导方法可以通过一组恒q带通滤波器,然后是包络检测器和分路神经网络来实现,并且所得到的动态系统能够进行稳健的AM-FM估计。我们的模型与先前的心理物理实验一致,这些实验表明声信号的调幅和调频成分可能通过FM- AM转导在脑干中转化为共同的神经编码(Saberi和Hafter 1995)。在调幅调频分解的分流网络之后是对比度增强分流网络,该分流网络提供了一种机制,当输入刺激的调频扫过多个滤波器时,可以鲁棒地选择听觉滤波器通道。分路网络的AM-FM输出可以提供鲁棒的特征表示,并被考虑用于信号识别和多分量分解问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of the phase vocoder to pitch-preserving synchronization of an audio stream to an external clock Bayesian restoration of quantised audio signals using a sinusoidal model with autoregressive residuals Joint estimation of vocal tract filter and glottal source waveform via convex optimization Grid-based beamformer design for room-environment microphone arrays Maximization of the subjective loudness of speech with constrained amplitude
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1