Indium Tin Oxide Coated Surface Plasmon Resonance Based Biosensor for Cancer Cell Detection

M. Hasan, Rajib Humayun Munshi, Faqrul Alam Shefat, S. Akter
{"title":"Indium Tin Oxide Coated Surface Plasmon Resonance Based Biosensor for Cancer Cell Detection","authors":"M. Hasan, Rajib Humayun Munshi, Faqrul Alam Shefat, S. Akter","doi":"10.1109/ECCE57851.2023.10101514","DOIUrl":null,"url":null,"abstract":"This A novel conventional single-core SPR-based cancerous or malignant cell detector sensor is demonstrated for the rapid identification and monitoring of cancer-affected distinct cell types. Each cancer-infected cell's refractive index (RI) is contrasted to the RI of its own healthy individual, and significant variations in optical properties are discovered. Moreover, the concentration of cancerous cells in liquid is estimated at 80%, and the finite element method (FEM) is used for detection (FEM). A thin indium tin oxide (ITO) film coating (50 nm) separates the silica and cancer cell parts, allowing for a plasmonic band gap to vary the spectral shift. The suggested sensor has a significant level of birefringence of 0.035 and a length of the coupling of up to 70 μm, On the other hand, the proposed model gives an ideal wavelength sensitivity level of around 10357.14 nm/RIU and 17750 nm/RIU, with a sensor resolution of 1.41x10−3 RIU and 7.37x10−3 RIU. In addition, the transmittance variance of cancerous cells varies from nearly 4100 dB/RIU to 6800 dB/RIU, in primary polarization mode, the amplitude sensitivities for various cancer cells range from about -405 RIU−1 to -430 RIU−1, with a detection limit of 0.025.","PeriodicalId":131537,"journal":{"name":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE57851.2023.10101514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This A novel conventional single-core SPR-based cancerous or malignant cell detector sensor is demonstrated for the rapid identification and monitoring of cancer-affected distinct cell types. Each cancer-infected cell's refractive index (RI) is contrasted to the RI of its own healthy individual, and significant variations in optical properties are discovered. Moreover, the concentration of cancerous cells in liquid is estimated at 80%, and the finite element method (FEM) is used for detection (FEM). A thin indium tin oxide (ITO) film coating (50 nm) separates the silica and cancer cell parts, allowing for a plasmonic band gap to vary the spectral shift. The suggested sensor has a significant level of birefringence of 0.035 and a length of the coupling of up to 70 μm, On the other hand, the proposed model gives an ideal wavelength sensitivity level of around 10357.14 nm/RIU and 17750 nm/RIU, with a sensor resolution of 1.41x10−3 RIU and 7.37x10−3 RIU. In addition, the transmittance variance of cancerous cells varies from nearly 4100 dB/RIU to 6800 dB/RIU, in primary polarization mode, the amplitude sensitivities for various cancer cells range from about -405 RIU−1 to -430 RIU−1, with a detection limit of 0.025.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于氧化铟锡涂层表面等离子体共振的肿瘤细胞检测生物传感器
这是一种新型的传统单核基于spr的癌症或恶性细胞检测器传感器,用于快速识别和监测受癌症影响的不同细胞类型。将每个癌症感染细胞的折射率(RI)与其自身健康个体的折射率进行对比,发现光学特性的显著差异。此外,估计液体中癌细胞的浓度为80%,并采用有限元法进行检测。一层薄薄的氧化铟锡(ITO)薄膜涂层(50nm)将二氧化硅和癌细胞部分分开,允许等离子体带隙改变光谱位移。该传感器具有显著的双折射水平0.035,耦合长度高达70 μm,另一方面,该模型给出的理想波长灵敏度水平约为10357.14 nm/RIU和17750 nm/RIU,传感器分辨率分别为1.41x10−3 RIU和7.37x10−3 RIU。此外,癌细胞的透射率方差在近4100 dB/RIU到6800 dB/RIU之间变化,在初级偏振模式下,各种癌细胞的振幅灵敏度在-405 RIU−1到-430 RIU−1之间,检测限为0.025。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclone Prediction Visualization Tools Using Machine Learning Models and Optical Flow Exploratory Perspective of PV Net-Energy-Metering for Residential Prosumers: A Case Study in Dhaka, Bangladesh Estimation of Soil Moisture with Meteorological Variables in Supervised Machine Learning Models Deep CNN-GRU Based Human Activity Recognition with Automatic Feature Extraction Using Smartphone and Wearable Sensors Bengali-English Neural Machine Translation Using Deep Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1