Joint Decoding for Chinese Word Segmentation and POS Tagging Using Character-Based and Word-Based Discriminative Models

Xinxin Li, Xuan Wang, Lin Yao
{"title":"Joint Decoding for Chinese Word Segmentation and POS Tagging Using Character-Based and Word-Based Discriminative Models","authors":"Xinxin Li, Xuan Wang, Lin Yao","doi":"10.1109/IALP.2011.24","DOIUrl":null,"url":null,"abstract":"For Chinese word segmentation and POS tagging problem, both character-based and word-based discriminative approaches can be used. Experiments show that these two approaches bring different errors and can complement each other. In this paper, we propose a joint decoding model based on both character-based and word-based models using multi-beam search algorithm. Experimental results show that the joint decoding model outperforms character-based and word-based baseline models.","PeriodicalId":297167,"journal":{"name":"2011 International Conference on Asian Language Processing","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2011.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

For Chinese word segmentation and POS tagging problem, both character-based and word-based discriminative approaches can be used. Experiments show that these two approaches bring different errors and can complement each other. In this paper, we propose a joint decoding model based on both character-based and word-based models using multi-beam search algorithm. Experimental results show that the joint decoding model outperforms character-based and word-based baseline models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于字符和词判别模型的汉语分词和词性标注联合译码
对于汉语分词和词性标注问题,可以采用基于字符的判别方法和基于词的判别方法。实验表明,这两种方法误差不同,可以互补。本文提出了一种基于多波束搜索算法的基于字符和词的联合解码模型。实验结果表明,联合解码模型优于基于字符和基于单词的基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automatic Linguistics Approach for Persian Document Summarization Research on the Uyghur Information Database for Information Processing Research on Multi-document Summarization Model Based on Dynamic Manifold-Ranking Mining Parallel Data from Comparable Corpora via Triangulation A Query Reformulation Model Using Markov Graphic Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1