Atsushi Shimada, Yuta Taniguchi, Fumiya Okubo, S. Konomi, H. Ogata
{"title":"Online change detection for monitoring individual student behavior via clickstream data on E-book system","authors":"Atsushi Shimada, Yuta Taniguchi, Fumiya Okubo, S. Konomi, H. Ogata","doi":"10.1145/3170358.3170412","DOIUrl":null,"url":null,"abstract":"We propose a new change detection method using clickstream data collected through an e-Book system. Most of the prior work has focused on the batch processing of clickstream data. In contrast, the proposed method is designed for online processing, with the model parameters for change detection updated sequentially based on observations of new click events. More specifically, our method generates a model for an individual student and performs minute-by-minute change detection based on click events during a classroom lecture. We collected clickstream data from four face-to-face lectures, and conducted experiments to demonstrate how the proposed method discovered change points and how such change points correlated with the students' performances.","PeriodicalId":437369,"journal":{"name":"Proceedings of the 8th International Conference on Learning Analytics and Knowledge","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3170358.3170412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
We propose a new change detection method using clickstream data collected through an e-Book system. Most of the prior work has focused on the batch processing of clickstream data. In contrast, the proposed method is designed for online processing, with the model parameters for change detection updated sequentially based on observations of new click events. More specifically, our method generates a model for an individual student and performs minute-by-minute change detection based on click events during a classroom lecture. We collected clickstream data from four face-to-face lectures, and conducted experiments to demonstrate how the proposed method discovered change points and how such change points correlated with the students' performances.