Estimate traffic control patterns using a hybrid neural network

E. Chang
{"title":"Estimate traffic control patterns using a hybrid neural network","authors":"E. Chang","doi":"10.1109/IJCNN.1999.833517","DOIUrl":null,"url":null,"abstract":"Many operating agencies are currently developing computerized freeway traffic management systems to support traffic operations as part of the intelligent transportation system (ITS) user service improvements. This study illustrates the importance of using simplified data analysis and presents a promising approach for improving demand prediction and traffic data modeling to support pro-active control. This study found that the approach of combining advanced neural networks and conventional error correction is promising for improved ITS applications.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.833517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many operating agencies are currently developing computerized freeway traffic management systems to support traffic operations as part of the intelligent transportation system (ITS) user service improvements. This study illustrates the importance of using simplified data analysis and presents a promising approach for improving demand prediction and traffic data modeling to support pro-active control. This study found that the approach of combining advanced neural networks and conventional error correction is promising for improved ITS applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用混合神经网络估计交通控制模式
许多运营机构目前正在开发计算机化的高速公路交通管理系统,以支持交通运营,作为智能交通系统(ITS)用户服务改进的一部分。这项研究说明了使用简化数据分析的重要性,并提出了一种有前途的方法来改进需求预测和交通数据建模,以支持主动控制。本研究发现,结合先进神经网络和传统纠错的方法有望改善ITS的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1