Enhancement of Feature Engineering for Conditional Random Field Learning in Chinese Word Segmentation Using Unlabeled Data

Mike Tian-Jian Jiang, Cheng-Wei Shih, Ting-Hao Yang, Chan-Hung Kuo, Richard Tzong-Han Tsai, W. Hsu
{"title":"Enhancement of Feature Engineering for Conditional Random Field Learning in Chinese Word Segmentation Using Unlabeled Data","authors":"Mike Tian-Jian Jiang, Cheng-Wei Shih, Ting-Hao Yang, Chan-Hung Kuo, Richard Tzong-Han Tsai, W. Hsu","doi":"10.30019/IJCLCLP.201209.0003","DOIUrl":null,"url":null,"abstract":"This work proposes a unified view of several features based on frequent strings extracted from unlabeled data that improve the conditional random fields (CRF) model for Chinese word segmentation (CWS). These features include character-based n-gram (CNG), accessor variety based string (AVS) and its variation of left-right co-existed feature (LRAVS), term-contributed frequency (TCF), and term-contributed boundary (TCB) with a specific manner of boundary overlapping. For the experiments, the baseline is the 6-tag, a state-of-the-art labeling scheme of CRF-based CWS, and the data set is acquired from the 2005 CWS Bakeoff of Special Interest Group on Chinese Language Processing (SIGHAN) of the Association for Computational Linguistics (ACL) and SIGHAN CWS Bakeoff 2010. The experimental results show that all of these features improve the performance of the baseline system in terms of recall, precision, and their harmonic average as F1 measure score, on both accuracy (F) and out-of-vocabulary recognition (FOOV). In particular, this work presents compound features involving LRAVS/AVS and TCF/TCB that are competitive with other types of features for CRF-based CWS in terms of F and FOOV, respectively.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30019/IJCLCLP.201209.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work proposes a unified view of several features based on frequent strings extracted from unlabeled data that improve the conditional random fields (CRF) model for Chinese word segmentation (CWS). These features include character-based n-gram (CNG), accessor variety based string (AVS) and its variation of left-right co-existed feature (LRAVS), term-contributed frequency (TCF), and term-contributed boundary (TCB) with a specific manner of boundary overlapping. For the experiments, the baseline is the 6-tag, a state-of-the-art labeling scheme of CRF-based CWS, and the data set is acquired from the 2005 CWS Bakeoff of Special Interest Group on Chinese Language Processing (SIGHAN) of the Association for Computational Linguistics (ACL) and SIGHAN CWS Bakeoff 2010. The experimental results show that all of these features improve the performance of the baseline system in terms of recall, precision, and their harmonic average as F1 measure score, on both accuracy (F) and out-of-vocabulary recognition (FOOV). In particular, this work presents compound features involving LRAVS/AVS and TCF/TCB that are competitive with other types of features for CRF-based CWS in terms of F and FOOV, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中文无标记分词中条件随机场学习特征工程的改进
本文提出了基于从未标记数据中提取的频繁字符串的几个特征的统一视图,改进了汉语分词的条件随机场(CRF)模型。这些特征包括基于字符的n图(CNG)、基于存取器变化的字符串(AVS)及其左右共存特征(LRAVS)的变化、词条贡献频率(TCF)和具有特定边界重叠方式的词条贡献边界(TCB)。实验以基于crf的CWS最先进的6标签标注方案为基准,数据集来自美国计算语言学协会(ACL) 2005年中国语言处理特别兴趣小组(SIGHAN) CWS Bakeoff和2010年SIGHAN CWS Bakeoff。实验结果表明,所有这些特征都提高了基线系统在查全率、查准率和它们的调和平均值作为F1测量分数方面的性能,在准确率(F)和词汇外识别(FOOV)方面。特别是,这项工作提出了涉及LRAVS/AVS和TCF/TCB的复合特征,它们分别在F和FOOV方面与基于crf的CWS的其他类型特征相竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Cold Start Personalized Language Model Using Social Network Information Detecting and Correcting Syntactic Errors in Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars TQDL: Integrated Models for Cross-Language Document Retrieval Evaluation of TTS Systems in Intelligibility and Comprehension Tasks: a Case Study of HTS-2008 and Multisyn Synthesizers Effects of Combining Bilingual and Collocational Information on Translation of English and Chinese Verb-Noun Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1