In-Network Decision Making Intelligence for Task Allocation in Edge Computing

Konstantinos Kolomvatsos, C. Anagnostopoulos
{"title":"In-Network Decision Making Intelligence for Task Allocation in Edge Computing","authors":"Konstantinos Kolomvatsos, C. Anagnostopoulos","doi":"10.1109/ICTAI.2018.00104","DOIUrl":null,"url":null,"abstract":"Humongous contextual data are produced by sensing and computing devices (nodes) in distributed computing environments supporting inferential/predictive analytics. Nodes locally process and execute analytics tasks over contextual data. Demanding inferential analytics are crucial for supporting local real-time applications, however, they deplete nodes' resources. We contribute with a distributed methodology that pushes the task allocation decision at the network edge by intelligently scheduling and distributing analytics tasks among nodes. Each node autonomously decides whether the tasks are conditionally executed locally, or in networked neighboring nodes, or delegated to the Cloud based on the current nodes' context and statistical data relevance. We comprehensively evaluate our methodology demonstrating its applicability in edge computing environments.","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Humongous contextual data are produced by sensing and computing devices (nodes) in distributed computing environments supporting inferential/predictive analytics. Nodes locally process and execute analytics tasks over contextual data. Demanding inferential analytics are crucial for supporting local real-time applications, however, they deplete nodes' resources. We contribute with a distributed methodology that pushes the task allocation decision at the network edge by intelligently scheduling and distributing analytics tasks among nodes. Each node autonomously decides whether the tasks are conditionally executed locally, or in networked neighboring nodes, or delegated to the Cloud based on the current nodes' context and statistical data relevance. We comprehensively evaluate our methodology demonstrating its applicability in edge computing environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边缘计算中任务分配的网络决策智能
海量的上下文数据是由支持推理/预测分析的分布式计算环境中的传感和计算设备(节点)产生的。节点在本地处理和执行上下文数据上的分析任务。要求推理分析对于支持本地实时应用程序至关重要,然而,它们会耗尽节点的资源。我们采用分布式方法,通过在节点之间智能调度和分配分析任务,在网络边缘推动任务分配决策。每个节点根据当前节点的上下文和统计数据相关性,自主决定任务是在本地有条件地执行,还是在联网的相邻节点中执行,或者委托给云。我们全面评估了我们的方法,证明了它在边缘计算环境中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Title page i] Enhanced Unsatisfiable Cores for QBF: Weakening Universal to Existential Quantifiers Effective Ant Colony Optimization Solution for the Brazilian Family Health Team Scheduling Problem Exploiting Global Semantic Similarity Biterms for Short-Text Topic Discovery Assigning and Scheduling Service Visits in a Mixed Urban/Rural Setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1