SMOILE

A. Chenreddy, Parshan Pakiman, Selvaprabu Nadarajah, Ranganathan Chandrasekaran, Rick Abens
{"title":"SMOILE","authors":"A. Chenreddy, Parshan Pakiman, Selvaprabu Nadarajah, Ranganathan Chandrasekaran, Rick Abens","doi":"10.1145/3292500.3330788","DOIUrl":null,"url":null,"abstract":"Product brands employ shopper marketing (SM) strategies to convert shoppers along the path to purchase. Traditional marketing mix models (MMMs), which leverage regression techniques and historical data, can be used to predict the component of sales lift due to SM tactics. The resulting predictive model is a critical input to plan future SM strategies. The implementation of traditional MMMs, however, requires significant ad-hoc manual intervention due to their limited flexibility in (i) explicitly capturing the temporal link between decisions; (ii) accounting for the interaction between business rules and past (sales and decision) data during the attribution of lift to SM; and (iii) ensuring that future decisions adhere to business rules. These issues necessitate MMMs with tailored structures for specific products and retailers, each requiring significant hand-engineering to achieve satisfactory performance -- a major implementation challenge. We propose an SM Optimization and Inverse Learning Engine (SMOILE) that combines optimization and inverse reinforcement learning to streamline implementation. SMOILE learns a model of lift by viewing SM tactic choice as a sequential process, leverages inverse reinforcement learning to explicitly couple sales and decision data, and employs an optimization approach to handle a wide-array of business rules. Using a unique dataset containing sales and SM spend information across retailers and products, we illustrate how SMOILE standardizes the use of data to prescribe future SM decisions. We also track an industry benchmark to showcase the importance of encoding SM lift and decision structures to mitigate spurious results when uncovering the impact of SM decisions.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Product brands employ shopper marketing (SM) strategies to convert shoppers along the path to purchase. Traditional marketing mix models (MMMs), which leverage regression techniques and historical data, can be used to predict the component of sales lift due to SM tactics. The resulting predictive model is a critical input to plan future SM strategies. The implementation of traditional MMMs, however, requires significant ad-hoc manual intervention due to their limited flexibility in (i) explicitly capturing the temporal link between decisions; (ii) accounting for the interaction between business rules and past (sales and decision) data during the attribution of lift to SM; and (iii) ensuring that future decisions adhere to business rules. These issues necessitate MMMs with tailored structures for specific products and retailers, each requiring significant hand-engineering to achieve satisfactory performance -- a major implementation challenge. We propose an SM Optimization and Inverse Learning Engine (SMOILE) that combines optimization and inverse reinforcement learning to streamline implementation. SMOILE learns a model of lift by viewing SM tactic choice as a sequential process, leverages inverse reinforcement learning to explicitly couple sales and decision data, and employs an optimization approach to handle a wide-array of business rules. Using a unique dataset containing sales and SM spend information across retailers and products, we illustrate how SMOILE standardizes the use of data to prescribe future SM decisions. We also track an industry benchmark to showcase the importance of encoding SM lift and decision structures to mitigate spurious results when uncovering the impact of SM decisions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SMOILE
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning HATS Temporal Probabilistic Profiles for Sepsis Prediction in the ICU Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework Adaptive Influence Maximization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1