{"title":"Multi-Model Feedforward Dynamic Matrix Control of Polymer Membrane Fuel Cell with Dead-Ended Anode and Cyclic Purge Process","authors":"Tianyao Pan, Jiong Shen, Li Sun, Junli Zhang","doi":"10.1109/CCTA.2018.8511564","DOIUrl":null,"url":null,"abstract":"This paper proposes a control strategy for a Polymer Electrolyte Membrane Fuel Cell (PEMFC) with a dead-ended anode (DEA) and cyclic purge process using Multi-model Feedforward Dynamic Matrix Control (MFDMC) with a switch law. MFDMC is a model-based predictive control method, which has superiority in addressing control problems with constraints and nonlinearity. The control objective is to maintain a low differential pressure across the membrane against the disturbance of the purge process and load change. A mathematical model is built and its dynamics is recognized at varied operating conditions to demonstrate the transient behavior of a PEMFC stack. Simulation results show the ability of the MFDMC to compensate the influence of periodic purging and load change without constraint violation of the actuator.","PeriodicalId":358360,"journal":{"name":"2018 IEEE Conference on Control Technology and Applications (CCTA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA.2018.8511564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a control strategy for a Polymer Electrolyte Membrane Fuel Cell (PEMFC) with a dead-ended anode (DEA) and cyclic purge process using Multi-model Feedforward Dynamic Matrix Control (MFDMC) with a switch law. MFDMC is a model-based predictive control method, which has superiority in addressing control problems with constraints and nonlinearity. The control objective is to maintain a low differential pressure across the membrane against the disturbance of the purge process and load change. A mathematical model is built and its dynamics is recognized at varied operating conditions to demonstrate the transient behavior of a PEMFC stack. Simulation results show the ability of the MFDMC to compensate the influence of periodic purging and load change without constraint violation of the actuator.