Efficient MLP digital implementation on FPGA

S. Vitabile, V. Conti, Fulvio Gennaro, F. Sorbello
{"title":"Efficient MLP digital implementation on FPGA","authors":"S. Vitabile, V. Conti, Fulvio Gennaro, F. Sorbello","doi":"10.1109/DSD.2005.38","DOIUrl":null,"url":null,"abstract":"The efficiency and the accuracy of a digital feedforward neural networks must be optimized to obtain both high classification rate and minimum area on chip. In this paper an efficient MLP digital implementation. The key features of the hardware implementation are the virtual neuron based architecture and the use of the sinusoidal activation function for the hidden layer. The effectiveness of the proposed solutions has been evaluated developing different FPGA based neural prototypes for the high energy physics domain and the automatic road sign recognition domain. The use of the sinusoidal activation function decreases hardware resource employment of about 32% when compared with the standard sigmoid based neuron implementation. The virtual neuron implementation makes efficient the mapping of a neural network into hardware devices since it leads to a significant decreasing of concurrent memory access.","PeriodicalId":119054,"journal":{"name":"8th Euromicro Conference on Digital System Design (DSD'05)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th Euromicro Conference on Digital System Design (DSD'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2005.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

The efficiency and the accuracy of a digital feedforward neural networks must be optimized to obtain both high classification rate and minimum area on chip. In this paper an efficient MLP digital implementation. The key features of the hardware implementation are the virtual neuron based architecture and the use of the sinusoidal activation function for the hidden layer. The effectiveness of the proposed solutions has been evaluated developing different FPGA based neural prototypes for the high energy physics domain and the automatic road sign recognition domain. The use of the sinusoidal activation function decreases hardware resource employment of about 32% when compared with the standard sigmoid based neuron implementation. The virtual neuron implementation makes efficient the mapping of a neural network into hardware devices since it leads to a significant decreasing of concurrent memory access.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FPGA的高效MLP数字化实现
为了获得较高的分类率和最小的片上面积,必须对数字前馈神经网络的效率和精度进行优化。本文提出了一种高效的MLP数字化实现方法。硬件实现的关键特点是基于虚拟神经元的结构和使用正弦激活函数作为隐藏层。在高能物理领域和自动道路标志识别领域开发了不同的基于FPGA的神经网络原型,对所提出的解决方案的有效性进行了评估。与标准的基于s形的神经元实现相比,正弦激活函数的使用减少了约32%的硬件资源使用。虚拟神经元的实现使得神经网络映射到硬件设备的效率大大提高,因为它导致并发内存访问的显著减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A processor for testing mixed-signal cores in system-on-chip Educational tool for the demonstration of DfT principles based on scan methodologies Capturing processor architectures from protocol processing applications: a case study Power-composition profile driven co-synthesis with power management selection for dynamic and leakage energy reduction High-level synthesis in latency insensitive system methodology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1