Protecting data from malware threats using machine learning technique

Mozammel Chowdhury, Azizur Rahman, R. Islam
{"title":"Protecting data from malware threats using machine learning technique","authors":"Mozammel Chowdhury, Azizur Rahman, R. Islam","doi":"10.1109/ICIEA.2017.8283111","DOIUrl":null,"url":null,"abstract":"Cyber attacks against sensitive data have become as serious threats all over the world due to the rising applications of computer and information technology. New malware or malicious programs are released everyday by cyber criminals through the Internet in an attempt to steal or destroy important data. Hence, research on protecting data receives tremendous interest in the cyber community. In order to cope with new variants of malicious software, machine learning techniques can be used for accurate classification and detection. This paper proposes an efficient scheme for malware detection for protecting sensitive data from malicious threats using data mining and machine learning techniques. Experimental results shows that the proposed approach gives better performance compared to other similar methods.","PeriodicalId":443463,"journal":{"name":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2017.8283111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Cyber attacks against sensitive data have become as serious threats all over the world due to the rising applications of computer and information technology. New malware or malicious programs are released everyday by cyber criminals through the Internet in an attempt to steal or destroy important data. Hence, research on protecting data receives tremendous interest in the cyber community. In order to cope with new variants of malicious software, machine learning techniques can be used for accurate classification and detection. This paper proposes an efficient scheme for malware detection for protecting sensitive data from malicious threats using data mining and machine learning techniques. Experimental results shows that the proposed approach gives better performance compared to other similar methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习技术保护数据免受恶意软件威胁
随着计算机和信息技术应用的日益广泛,针对敏感数据的网络攻击已成为全球范围内的严重威胁。网络犯罪分子每天都会通过互联网发布新的恶意软件或恶意程序,试图窃取或破坏重要数据。因此,对数据保护的研究受到了网络社区的极大关注。为了应对新的恶意软件变体,机器学习技术可以用于准确的分类和检测。本文提出了一种有效的恶意软件检测方案,利用数据挖掘和机器学习技术保护敏感数据免受恶意威胁。实验结果表明,与其他类似方法相比,该方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An evolutionary algorithm with 2-D encoding for image segmentation A neural network based place recognition technique for a crowded indoor environment Internet of Things (IoT) in E-commerce: For people with disabilities Predictive analytics for detecting sensor failure using autoregressive integrated moving average model Energy-controlled optimization algorithm for rechargeable unmanned aerial vehicle network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1