Discovering Knowledge by Comparing Silhouettes Using K-Means Clustering for Customer Segmentation

Zeeshan Akbar, Jun Liu, Z. Latif
{"title":"Discovering Knowledge by Comparing Silhouettes Using K-Means Clustering for Customer Segmentation","authors":"Zeeshan Akbar, Jun Liu, Z. Latif","doi":"10.4018/ijkm.2020070105","DOIUrl":null,"url":null,"abstract":"A large amount of data is generated every day from different sources. Knowledge extraction is the discovery of some useful and potential information from data that can help to make better decisions. Today's business process requires a technique that is intelligent and has the capability to discover useful patterns in data called data mining. This research is about using silhouettes created from K-means clustering to extract knowledge. This paper implements K-means clustering technique in order to group customers into K clusters according to deals purchased in two different scenarios using evolutionary algorithm for optimization and compare silhouettes for different K values to analyze the improvement in extracted knowledge.","PeriodicalId":196147,"journal":{"name":"Int. J. Knowl. Manag.","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijkm.2020070105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A large amount of data is generated every day from different sources. Knowledge extraction is the discovery of some useful and potential information from data that can help to make better decisions. Today's business process requires a technique that is intelligent and has the capability to discover useful patterns in data called data mining. This research is about using silhouettes created from K-means clustering to extract knowledge. This paper implements K-means clustering technique in order to group customers into K clusters according to deals purchased in two different scenarios using evolutionary algorithm for optimization and compare silhouettes for different K values to analyze the improvement in extracted knowledge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于k均值聚类的客户细分中轮廓对比知识发现
每天都有来自不同来源的大量数据产生。知识提取是从数据中发现一些有用的和潜在的信息,这些信息可以帮助做出更好的决策。当今的业务流程需要一种智能技术,这种技术具有发现数据中有用模式的能力,称为数据挖掘。这项研究是关于使用k均值聚类产生的轮廓来提取知识。本文采用K-means聚类技术,利用进化算法进行优化,根据两种不同场景下的购买交易将客户分组为K类,并比较不同K值下的轮廓,分析提取知识的改进情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unrealistic Optimism Regarding Artificial Intelligence Opportunities in Human Resource Management Impact of Inbound Open Innovation on Chinese Advanced Manufacturing Enterprise Performance Corporate Social Responsibility Knowledge Transfer in Interfirm Networks Knowledge Retention Challenges in Information Systems Development Teams: A Revelatory Story From Developers in New Zealand Communication Strategies of Entrepreneurial Organizations in Mobile Apps Industry: Hidden Communication Prior to Product Launch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1