Explainable Recommendation Based on Weighted Knowledge Graphs and Graph Convolutional Networks

Rima Boughareb, H. Seridi-Bouchelaghem, S. Beldjoudi
{"title":"Explainable Recommendation Based on Weighted Knowledge Graphs and Graph Convolutional Networks","authors":"Rima Boughareb, H. Seridi-Bouchelaghem, S. Beldjoudi","doi":"10.1142/s0219649222500988","DOIUrl":null,"url":null,"abstract":"Knowledge Graphs (KGs) have been shown to have great potential to provide rich and highly defined structured data about Recommender Systems (RSs) items. This paper introduces Explain- KGCN, an Explainable RS based on KGs and Graph Convolutional Networks (GCNs). The system emphasises the importance of semantic information characterisation and high-order connectivity of message passing to explore potential user preferences. Thus, based on a relation-specific neighbourhood aggregation function, it aims to generate for each given item a set of relation-specific embeddings that depend on each semantic relation in the KG. Specifically, the relation-specific aggregator discriminates neighbours based on their relationship with the target node, allowing the system to model the semantics of various relationships explicitly. Experiments conducted on two real-world datasets for the top-[Formula: see text] recommendation task demonstrate the state-of-the-art performance of the system proposed. Besides improving predictive performance in terms of precision and recall, Explain-KGCN fully exploits wealthy structured information provided by KGs to offer recommendation explanation.","PeriodicalId":127309,"journal":{"name":"J. Inf. Knowl. Manag.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Knowl. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219649222500988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Knowledge Graphs (KGs) have been shown to have great potential to provide rich and highly defined structured data about Recommender Systems (RSs) items. This paper introduces Explain- KGCN, an Explainable RS based on KGs and Graph Convolutional Networks (GCNs). The system emphasises the importance of semantic information characterisation and high-order connectivity of message passing to explore potential user preferences. Thus, based on a relation-specific neighbourhood aggregation function, it aims to generate for each given item a set of relation-specific embeddings that depend on each semantic relation in the KG. Specifically, the relation-specific aggregator discriminates neighbours based on their relationship with the target node, allowing the system to model the semantics of various relationships explicitly. Experiments conducted on two real-world datasets for the top-[Formula: see text] recommendation task demonstrate the state-of-the-art performance of the system proposed. Besides improving predictive performance in terms of precision and recall, Explain-KGCN fully exploits wealthy structured information provided by KGs to offer recommendation explanation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加权知识图和图卷积网络的可解释推荐
知识图谱(Knowledge Graphs, KGs)已被证明在提供关于推荐系统(RSs)项目的丰富和高度定义的结构化数据方面具有巨大潜力。本文介绍了一种基于KGs和图卷积网络(GCNs)的可解释RS - Explain- KGCN。该系统强调了语义信息表征和消息传递的高阶连通性的重要性,以探索潜在的用户偏好。因此,基于特定于关系的邻域聚合函数,它旨在为每个给定项目生成一组依赖于KG中的每个语义关系的特定于关系的嵌入。具体来说,特定于关系的聚合器根据邻居与目标节点的关系来区分它们,从而允许系统显式地对各种关系的语义进行建模。在top-[公式:见文本]推荐任务的两个真实数据集上进行的实验证明了所提出系统的最先进性能。除了在准确率和召回率方面提高预测性能外,Explain-KGCN还充分利用了KGs提供的丰富结构化信息来提供推荐解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge Management in Higher Education in Vietnam: Insights from Higher Education Leaders - An Exploratory Study The Organisation's Size-Innovation Performance Relationship: The Role of Human Resource Development Mechanisms A Comparative Review of Sentimental Analysis Using Machine Learning and Deep Learning Approaches Vocational Education Information Technology Based on Cross-Attention Fusion Knowledge Map Recommendation Algorithm Redesigning Knowledge Management Through Corporate Sustainability Strategy in the Post-Pandemic Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1