Ana Zelaia Jauregi, Olatz Arregi Uriarte, B. Sierra
{"title":"A Multi-classifier Approach to support Coreference Resolution in a Vector Space Model","authors":"Ana Zelaia Jauregi, Olatz Arregi Uriarte, B. Sierra","doi":"10.3115/v1/W15-1503","DOIUrl":null,"url":null,"abstract":"In this paper a different machine learning approach is presented to deal with the coreference resolution task. This approach consists of a multi-classifier system that classifies mention-pairs in a reduced dimensional vector space. The vector representation for mentionpairs is generated using a rich set of linguistic features. The SVD technique is used to generate the reduced dimensional vector space. The approach is applied to the OntoNotes v4.0 Release Corpus for the column-format files used in CONLL-2011 coreference resolution shared task. The results obtained show that the reduced dimensional representation obtained by SVD is very adequate to appropriately classify mention-pair vectors. Moreover, we can state that the multi-classifier plays an important role in improving the results.","PeriodicalId":299646,"journal":{"name":"VS@HLT-NAACL","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VS@HLT-NAACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper a different machine learning approach is presented to deal with the coreference resolution task. This approach consists of a multi-classifier system that classifies mention-pairs in a reduced dimensional vector space. The vector representation for mentionpairs is generated using a rich set of linguistic features. The SVD technique is used to generate the reduced dimensional vector space. The approach is applied to the OntoNotes v4.0 Release Corpus for the column-format files used in CONLL-2011 coreference resolution shared task. The results obtained show that the reduced dimensional representation obtained by SVD is very adequate to appropriately classify mention-pair vectors. Moreover, we can state that the multi-classifier plays an important role in improving the results.