Estimation of contour parameter uncertainties in permittivity imaging using MCMC sampling

C. Schwarzl, D. Watzenig, C. Fox
{"title":"Estimation of contour parameter uncertainties in permittivity imaging using MCMC sampling","authors":"C. Schwarzl, D. Watzenig, C. Fox","doi":"10.1109/SAM.2008.4606909","DOIUrl":null,"url":null,"abstract":"Electrical capacitance tomography is targeted on estimating the spatial permittivity distribution of an inhomogeneous medium from measurements of trans-capacitance of a multi-electrode assembly outside the boundary of the medium. Since small changes in the measured data cause large or unbounded changes in recovered parameters, the problem is an ill-posed inverse problem. In this article, special focus is on the robust reconstruction of the shape of material inhomogeneities in an otherwise uniform background material. In order to represent the boundary of the inclusion, radial basis functions (RBF) implying a low order of the state-space are introduced. This approach ensures smooth contours how they appear in industrial applications like in oil refinement. The inverse problem is formulated in a Bayesian inferential framework, by specifying a prior distribution for the shape of the inclusion, and characterizing the statistics of measurement noise. The Markov chain Monte Carlo (MCMC) is presented to efficiently explore the posterior distribution. The applicability of the proposed MCMC sampler is verified for a reconstruction example using measured data.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Electrical capacitance tomography is targeted on estimating the spatial permittivity distribution of an inhomogeneous medium from measurements of trans-capacitance of a multi-electrode assembly outside the boundary of the medium. Since small changes in the measured data cause large or unbounded changes in recovered parameters, the problem is an ill-posed inverse problem. In this article, special focus is on the robust reconstruction of the shape of material inhomogeneities in an otherwise uniform background material. In order to represent the boundary of the inclusion, radial basis functions (RBF) implying a low order of the state-space are introduced. This approach ensures smooth contours how they appear in industrial applications like in oil refinement. The inverse problem is formulated in a Bayesian inferential framework, by specifying a prior distribution for the shape of the inclusion, and characterizing the statistics of measurement noise. The Markov chain Monte Carlo (MCMC) is presented to efficiently explore the posterior distribution. The applicability of the proposed MCMC sampler is verified for a reconstruction example using measured data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用MCMC采样估计介电常数成像中轮廓参数的不确定性
电容层析成像的目标是通过测量介质边界外的多电极组件的跨电容来估计非均匀介质的空间介电常数分布。由于测量数据的微小变化会引起恢复参数的巨大或无界变化,因此该问题是一个不适定逆问题。在本文中,特别关注的是在均匀的背景材料中材料不均匀性形状的鲁棒重建。为了表示包体的边界,引入了隐含低阶状态空间的径向基函数(RBF)。这种方法确保了光滑的轮廓,就像它们在石油提炼等工业应用中出现的那样。通过指定包含形状的先验分布,并描述测量噪声的统计特性,在贝叶斯推理框架中制定了反问题。为了有效地探索后验分布,提出了马尔可夫链蒙特卡罗算法。通过实测数据重构实例,验证了所提MCMC采样器的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dual-linear predictor approach to blind source extraction for noisy mixtures Optimal combination of fourth order statistics for non-circular source separation Blind channel identification and signal recovery by confining a component of the observations into a convex-hull of minimum volume Power-aware distributed detection in IR-UWB sensor networks Linear least squares based acoustic source localization utilizing energy measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1