A Maritime Target Detector Based on CNN and Embedded Device for GF-3 Images

Chen Zhao, Pengbo Wang, Jian Wang, Zhirong Men
{"title":"A Maritime Target Detector Based on CNN and Embedded Device for GF-3 Images","authors":"Chen Zhao, Pengbo Wang, Jian Wang, Zhirong Men","doi":"10.1109/APSAR46974.2019.9048264","DOIUrl":null,"url":null,"abstract":"Recently, with the development of deep learning and the springing up of synthetic aperture radar (SAR) images, SAR maritime target detection based on convolutional neural network (CNN) has become a hot issue. However, most related work is realized on general purpose hardware like CPU or GPU, which is energy consuming, non-real-time and unable to be deployed on embedded devices. Aiming at this problem, this paper proposes a method to deploy a model of SAR maritime target detection network on an embedded device which employs custom artificial intelligence streaming architecture (CAISA). Moreover, the model is trained and tested on the Gaofen-3 (GF-3) spaceborne SAR images, which include six different kinds of maritime targets. Experiments based on the GF-3 dataset show the method is practicable and extensible.","PeriodicalId":377019,"journal":{"name":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSAR46974.2019.9048264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recently, with the development of deep learning and the springing up of synthetic aperture radar (SAR) images, SAR maritime target detection based on convolutional neural network (CNN) has become a hot issue. However, most related work is realized on general purpose hardware like CPU or GPU, which is energy consuming, non-real-time and unable to be deployed on embedded devices. Aiming at this problem, this paper proposes a method to deploy a model of SAR maritime target detection network on an embedded device which employs custom artificial intelligence streaming architecture (CAISA). Moreover, the model is trained and tested on the Gaofen-3 (GF-3) spaceborne SAR images, which include six different kinds of maritime targets. Experiments based on the GF-3 dataset show the method is practicable and extensible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CNN和嵌入式设备的GF-3图像海上目标检测器
近年来,随着深度学习技术的发展和合成孔径雷达(SAR)图像的兴起,基于卷积神经网络(CNN)的SAR海上目标检测成为研究的热点。然而,大多数相关工作都是在CPU或GPU等通用硬件上实现的,这些硬件能耗大,非实时,无法部署在嵌入式设备上。针对这一问题,本文提出了一种采用自定义人工智能流架构(CAISA)在嵌入式设备上部署SAR海上目标检测网络模型的方法。此外,该模型在高分3号(GF-3)星载SAR图像上进行了训练和测试,其中包括六种不同类型的海上目标。基于GF-3数据集的实验表明,该方法具有较强的可扩展性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Simulation Analysis of Missile-borne SAR System Dual-Frequency Interferometric Performance Simulation of UAV Dupa-SAR Influence of Elevation and Orbit Interpolation on the Accuracy of R-D Location Model Approximation for the Statistics of the Optimal Polarimetric Detector in K-Wishart model An Approach for Spaceborne InSAR DEM Inversion Integrated with Stereo-SAR Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1