Deep Learning for Grading Cardiomegaly Severity in Chest X-Rays: An Investigation

S. Candemir, S. Rajaraman, G. Thoma, Sameer Kiran Antani
{"title":"Deep Learning for Grading Cardiomegaly Severity in Chest X-Rays: An Investigation","authors":"S. Candemir, S. Rajaraman, G. Thoma, Sameer Kiran Antani","doi":"10.1109/LSC.2018.8572113","DOIUrl":null,"url":null,"abstract":"This study investigates using deep convolutional neural networks (CNN) for automatic detection of cardiomegaly in digital chest X-rays (CXRs). First, we employ and fine-tune several deep CNN architectures to detect presence of cardiomegaly in CXRs. Next, we introduce a CXR-based pre-trained model where we first fully train an architecture with a very large CXR dataset and then fine-tune the system with cardiomegaly CXRs. Finally, we investigate the correlation between softmax probability of an architecture and the severity of the disease. We use two publicly available datasets, NLM-Indiana Collection and NIH-CXR datasets. Based on our preliminary results (i) data-driven approach produces better results than prior rule-based approaches developed for cardiomegaly detection, (ii) our preliminary experiment with alternative pre-trained model is promising, and (iii) the system is more confident if severity increases.","PeriodicalId":254835,"journal":{"name":"2018 IEEE Life Sciences Conference (LSC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Life Sciences Conference (LSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSC.2018.8572113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This study investigates using deep convolutional neural networks (CNN) for automatic detection of cardiomegaly in digital chest X-rays (CXRs). First, we employ and fine-tune several deep CNN architectures to detect presence of cardiomegaly in CXRs. Next, we introduce a CXR-based pre-trained model where we first fully train an architecture with a very large CXR dataset and then fine-tune the system with cardiomegaly CXRs. Finally, we investigate the correlation between softmax probability of an architecture and the severity of the disease. We use two publicly available datasets, NLM-Indiana Collection and NIH-CXR datasets. Based on our preliminary results (i) data-driven approach produces better results than prior rule-based approaches developed for cardiomegaly detection, (ii) our preliminary experiment with alternative pre-trained model is promising, and (iii) the system is more confident if severity increases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习用于胸部x光片中心脏肿大严重程度分级的研究
本研究探讨了使用深度卷积神经网络(CNN)在数字胸部x射线(cxr)中自动检测心脏肿大。首先,我们采用并微调了几个深度CNN架构来检测cxr中心脏肥大的存在。接下来,我们引入了一个基于CXR的预训练模型,我们首先用一个非常大的CXR数据集完整地训练了一个架构,然后用心脏扩张的CXR对系统进行微调。最后,我们研究了建筑的软最大概率与疾病严重程度之间的相关性。我们使用两个公开可用的数据集,NLM-Indiana Collection和NIH-CXR数据集。根据我们的初步结果(i)数据驱动的方法比先前开发的用于心脏扩大检测的基于规则的方法产生更好的结果,(ii)我们使用替代预训练模型的初步实验是有希望的,(iii)如果严重程度增加,系统更有信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Veterinary Medicine Engineering Challenges and Opportunities Kinematic Data Clustering for Healthy Knee Gait Characterization A Nanosurface Microfluidic Device for Capture and Detection of Bacteria A Novel Fully Differential NMR Transciever Automated Enumeration and Classification of Bacteria in Fluorescent Microscopy Imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1