ESTIMASI BIOMASSA VEGETASI KEBUN RAYA BOGOR MENGGUNAKAN KOMBINASI CITRA WORLDVIEW-2 DAN ALGORITMA PEMELAJARAN MESIN

Didi Usmadi, Didit Okta Pribadi
{"title":"ESTIMASI BIOMASSA VEGETASI KEBUN RAYA BOGOR MENGGUNAKAN KOMBINASI CITRA WORLDVIEW-2 DAN ALGORITMA PEMELAJARAN MESIN","authors":"Didi Usmadi, Didit Okta Pribadi","doi":"10.14203/BKR.V23I1.632","DOIUrl":null,"url":null,"abstract":"An effective and efficient measurement method is required for estimating the vegetation biomass of an area with high canopy density. The combination of WorldView-2 imagery and machine learning algorithms can be an alternative approach for estimating vegetation biomass in Bogor Botanic Gardens. The research aimed to determine the variables from WorldView-2 imagery that can be used to estimate the vegetation biomass of Bogor Botanic Gardens, to identity several types of machine learning algorithms that produce the best prediction in estimating vegetation biomass in the field, to estimate and to map vegetation biomass in Bogor Botanic Gardens. The variables that had a significant correlation with biomass were NIR-reflectance, Blue-Correlation, Green-Correlation, NIR-Mean, and NIR-Variance. The NIR-Mean variable was the most important variable for estimating vegetation biomass. The random forest algorithm produced the best model for estimating vegetation biomass with r, PBIAS, RMSE, MAE and RSR values of 0,83, -11,51%, 185,47 Mg/ha, 139,43 Mg/ha, and 0,56 respectively. The estimated vegetation biomass of the Bogor Botanic Gardens had a range from 6,27 to 1.576,90 Mg/ha with an average of 183,96 Mg/ha and total biomass of 13,23 Gg. The combination of WorldView-2 imagery and the Random Forest algorithm produced a good predictive model compared to Artificial Neural Network and Support Vector Machine for estimating the vegetation biomass of Bogor Botanic Gardens. Bogor Botanic Gardens has a very important role in climate change mitigation, especially for the Bogor City.","PeriodicalId":274763,"journal":{"name":"Buletin Kebun Raya","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buletin Kebun Raya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14203/BKR.V23I1.632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An effective and efficient measurement method is required for estimating the vegetation biomass of an area with high canopy density. The combination of WorldView-2 imagery and machine learning algorithms can be an alternative approach for estimating vegetation biomass in Bogor Botanic Gardens. The research aimed to determine the variables from WorldView-2 imagery that can be used to estimate the vegetation biomass of Bogor Botanic Gardens, to identity several types of machine learning algorithms that produce the best prediction in estimating vegetation biomass in the field, to estimate and to map vegetation biomass in Bogor Botanic Gardens. The variables that had a significant correlation with biomass were NIR-reflectance, Blue-Correlation, Green-Correlation, NIR-Mean, and NIR-Variance. The NIR-Mean variable was the most important variable for estimating vegetation biomass. The random forest algorithm produced the best model for estimating vegetation biomass with r, PBIAS, RMSE, MAE and RSR values of 0,83, -11,51%, 185,47 Mg/ha, 139,43 Mg/ha, and 0,56 respectively. The estimated vegetation biomass of the Bogor Botanic Gardens had a range from 6,27 to 1.576,90 Mg/ha with an average of 183,96 Mg/ha and total biomass of 13,23 Gg. The combination of WorldView-2 imagery and the Random Forest algorithm produced a good predictive model compared to Artificial Neural Network and Support Vector Machine for estimating the vegetation biomass of Bogor Botanic Gardens. Bogor Botanic Gardens has a very important role in climate change mitigation, especially for the Bogor City.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
茂物植物园生物质量植被的估计使用了世界视图2的图像组合和机器跟踪算法
要估算高冠层密度地区的植被生物量,需要一种有效的测量方法。结合WorldView-2图像和机器学习算法可以作为估计茂物植物园植被生物量的另一种方法。该研究旨在确定可用于估计茂物植物园植被生物量的WorldView-2图像中的变量,确定几种类型的机器学习算法,这些算法可以在实地估计植被生物量时产生最佳预测,并估计和绘制茂物植物园的植被生物量。与生物量显著相关的变量为nir -反射率、Blue-Correlation、Green-Correlation、NIR-Mean和NIR-Variance。NIR-Mean变量是估算植被生物量最重要的变量。随机森林算法在r、PBIAS、RMSE、MAE和RSR分别为0、83、-11、51%、185、47 Mg/ha、139、43 Mg/ha和0.56时获得了最佳的植被生物量估算模型。茂物植物园植被生物量估算值为6.27 ~ 1.576 90 Mg/ha,平均值为183、96 Mg/ha,总生物量为13.23 Gg。将WorldView-2影像与随机森林算法相结合,与人工神经网络和支持向量机相比,建立了较好的茂物植物园植被生物量预测模型。茂物植物园在减缓气候变化方面发挥着非常重要的作用,特别是对茂物市而言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PENGARUH CEKAMAN KEKERINGAN TERHADAP KARAKTERISTIK ANATOMI DAUN, BATANG, DAN AKAR TANAMAN Nepenthes mirabilis (Lour.) Druce KARAKTERISTIK MORFOLOGI DAN VIABILITAS POLEN PADA EMPAT JENIS MAGNOLIA AKTIVITAS ANTIOKSIDAN DAN ANTIMIKROBA EKSTRAK METANOL BUAH DAN MAHKOTA BUNGA Vaccinium varingiifolium (Blume) Miq., KERABAT LIAR BLUEBERRY IDENTIFIKASI OTOMATIS LIMA JENIS RESAK (Vatica spp.) BERDASARKAN BEBERAPA KARAKTER MORFOLOGI DAUN DAN ALGORITMA PEMBELAJARAN MESIN PENGETAHUAN DAN PREFERENSI MASYARAKAT TERHADAP PEMANFAATAN AKAR KUNING (Fibraurea tinctoria Lour.) SEBAGAI MINUMAN KESEHATAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1