Fast transpose methods for kernel learning on sparse data

P. Haffner
{"title":"Fast transpose methods for kernel learning on sparse data","authors":"P. Haffner","doi":"10.1145/1143844.1143893","DOIUrl":null,"url":null,"abstract":"Kernel-based learning algorithms, such as Support Vector Machines (SVMs) or Perceptron, often rely on sequential optimization where a few examples are added at each iteration. Updating the kernel matrix usually requires matrix-vector multiplications. We propose a new method based on transposition to speedup this computation on sparse data. Instead of dot-products over sparse feature vectors, our computation incrementally merges lists of training examples and minimizes access to the data. Caching and shrinking are also optimized for sparsity. On very large natural language tasks (tagging, translation, text classification) with sparse feature representations, a 20 to 80-fold speedup over LIBSVM is observed using the same SMO algorithm. Theory and experiments explain what type of sparsity structure is needed for this approach to work, and why its adaptation to Maxent sequential optimization is inefficient.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Kernel-based learning algorithms, such as Support Vector Machines (SVMs) or Perceptron, often rely on sequential optimization where a few examples are added at each iteration. Updating the kernel matrix usually requires matrix-vector multiplications. We propose a new method based on transposition to speedup this computation on sparse data. Instead of dot-products over sparse feature vectors, our computation incrementally merges lists of training examples and minimizes access to the data. Caching and shrinking are also optimized for sparsity. On very large natural language tasks (tagging, translation, text classification) with sparse feature representations, a 20 to 80-fold speedup over LIBSVM is observed using the same SMO algorithm. Theory and experiments explain what type of sparsity structure is needed for this approach to work, and why its adaptation to Maxent sequential optimization is inefficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏数据核学习的快速转置方法
基于核的学习算法,如支持向量机(svm)或感知机(Perceptron),通常依赖于顺序优化,在每次迭代中添加一些示例。更新核矩阵通常需要矩阵-向量乘法。我们提出了一种基于换位的新方法来加快稀疏数据的计算速度。我们的计算不是稀疏特征向量上的点积,而是增量地合并训练示例列表,并最大限度地减少对数据的访问。缓存和收缩也针对稀疏性进行了优化。在具有稀疏特征表示的非常大的自然语言任务(标记、翻译、文本分类)上,使用相同的SMO算法可以观察到比LIBSVM提高20到80倍的速度。理论和实验解释了这种方法需要什么类型的稀疏结构才能工作,以及为什么它对Maxent顺序优化的适应是低效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a theory of learning with similarity functions Bayesian learning of measurement and structural models Predictive search distributions Data association for topic intensity tracking Feature value acquisition in testing: a sequential batch test algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1