Bayesian nonparametric models for biomedical data analysis

Tianjian Zhou
{"title":"Bayesian nonparametric models for biomedical data analysis","authors":"Tianjian Zhou","doi":"10.15781/T2MP4W42K","DOIUrl":null,"url":null,"abstract":"In this dissertation, we develop nonparametric Bayesian models for biomedical data analysis. In particular, we focus on inference for tumor heterogeneity and inference for missing data. First, we present a Bayesian feature allocation model for tumor subclone reconstruction using mutation pairs. The key innovation lies in the use of short reads mapped to pairs of proximal single nucleotide variants (SNVs). In contrast, most existing methods use only marginal reads for unpaired SNVs. In the same context of using mutation pairs, in order to recover the phylogenetic relationship of subclones, we then develop a Bayesian treed feature allocation model. In contrast to commonly used feature allocation models, we allow the latent features to be dependent, using a tree structure to introduce dependence. Finally, we propose a nonparametric Bayesian approach to monotone missing data in longitudinal studies with non-ignorable missingness. In contrast to most existing methods, our method allows for incorporating information from auxiliary covariates and is able to capture complex structures among the response, missingness and auxiliary covariates. Our models are validated through simulation studies and are applied to real-world biomedical datasets.","PeriodicalId":409996,"journal":{"name":"arXiv: Applications","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15781/T2MP4W42K","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this dissertation, we develop nonparametric Bayesian models for biomedical data analysis. In particular, we focus on inference for tumor heterogeneity and inference for missing data. First, we present a Bayesian feature allocation model for tumor subclone reconstruction using mutation pairs. The key innovation lies in the use of short reads mapped to pairs of proximal single nucleotide variants (SNVs). In contrast, most existing methods use only marginal reads for unpaired SNVs. In the same context of using mutation pairs, in order to recover the phylogenetic relationship of subclones, we then develop a Bayesian treed feature allocation model. In contrast to commonly used feature allocation models, we allow the latent features to be dependent, using a tree structure to introduce dependence. Finally, we propose a nonparametric Bayesian approach to monotone missing data in longitudinal studies with non-ignorable missingness. In contrast to most existing methods, our method allows for incorporating information from auxiliary covariates and is able to capture complex structures among the response, missingness and auxiliary covariates. Our models are validated through simulation studies and are applied to real-world biomedical datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物医学数据分析的贝叶斯非参数模型
在本论文中,我们建立了非参数贝叶斯模型用于生物医学数据分析。我们特别关注肿瘤异质性的推断和缺失数据的推断。首先,我们提出了一个基于突变对的肿瘤亚克隆重构贝叶斯特征分配模型。关键的创新在于使用映射到近端单核苷酸变异(snv)对的短读。相比之下,大多数现有方法仅对未配对的snv使用边缘读取。在使用突变对的相同背景下,为了恢复亚克隆的系统发育关系,我们建立了贝叶斯树特征分配模型。与常用的特征分配模型相比,我们允许潜在特征是依赖的,使用树结构引入依赖关系。最后,我们提出了一种非参数贝叶斯方法来处理具有不可忽略缺失的纵向研究中的单调缺失数据。与大多数现有方法相比,我们的方法允许从辅助协变量中合并信息,并且能够捕获响应,缺失和辅助协变量之间的复杂结构。我们的模型通过模拟研究得到验证,并应用于现实世界的生物医学数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weekly Bayesian Modelling Strategy to Predict Deaths by COVID-19: a Model and Case Study for the State of Santa Catarina, Brazil Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization Revealing the Transmission Dynamics of COVID-19: A Bayesian Framework for Rt Estimation Improving living biomass C-stock loss estimates by combining optical satellite, airborne laser scanning, and NFI data Bayesian classification for dating archaeological sites via projectile points.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1