{"title":"A reduced-rank approach to adaptive linearly constrained minimum variance beamforming based on joint iterative optimization of adaptive filters","authors":"R. D. de Lamare, M. Lowe","doi":"10.1109/SPAWC.2008.4641588","DOIUrl":null,"url":null,"abstract":"This paper presents a low-complexity reduced-rank approach to adaptive linearly constrained minimum variance (LCMV) beamforming. The proposed reduced-rank scheme is based on a constrained joint iterative optimization of adaptive filters according to the minimum variance criterion. The constrained joint iterative optimization procedure adjusts the parameters of a bank of full-rank adaptive filters that forms the projection matrix and an adaptive reduced-rank filter that operates at the output of the bank of filters. We describe LCMV expressions for the design of the projection matrix and the reduced-rank filter and low-complexity stochastic gradient adaptive algorithms for their efficient implementation. Simulations for a beamforming application show that the proposed scheme outperforms in convergence and tracking the state-of-the-art existing reduced-rank schemes with significantly lower complexity.","PeriodicalId":197154,"journal":{"name":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2008.4641588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a low-complexity reduced-rank approach to adaptive linearly constrained minimum variance (LCMV) beamforming. The proposed reduced-rank scheme is based on a constrained joint iterative optimization of adaptive filters according to the minimum variance criterion. The constrained joint iterative optimization procedure adjusts the parameters of a bank of full-rank adaptive filters that forms the projection matrix and an adaptive reduced-rank filter that operates at the output of the bank of filters. We describe LCMV expressions for the design of the projection matrix and the reduced-rank filter and low-complexity stochastic gradient adaptive algorithms for their efficient implementation. Simulations for a beamforming application show that the proposed scheme outperforms in convergence and tracking the state-of-the-art existing reduced-rank schemes with significantly lower complexity.