Team AutoMinuters @ AutoMin 2021: Leveraging state-of-the-art Text Summarization model to Generate Minutes using Transfer Learning

Parth Mahajan, Muskaan Singh, Harpreet Singh
{"title":"Team AutoMinuters @ AutoMin 2021: Leveraging state-of-the-art Text Summarization model to Generate Minutes using Transfer Learning","authors":"Parth Mahajan, Muskaan Singh, Harpreet Singh","doi":"10.21437/automin.2021-3","DOIUrl":null,"url":null,"abstract":"This paper presents our submission for the first shared task of automatic minuting (AutoMin@Interspeech 2021). The shared task consists of one main task generate minutes from the given meeting transcript. For this challenge, we leveraged state-of-art text summarization models to generate minutes using the transfer learning approach. We also provide an empirical analysis of our proposed method with other text summarization approaches. We evaluate our system submission quantitatively with 33% BERTscore and 11.6 % ROUGE L, which is rela-tively higher than the average submission in the shared task. Along with the qualitative evaluation, we also vouch for quantitative assessment, where we achieve (2.32, 2.64, 2.52) scores out of five for adequacy, grammatical correctness, and fluency. For the other two tasks, we use Jaccard and cosine text similarity metrics for a given transcript-minute pair corresponding to the same meeting (Task B) and if a given pair of meeting minutes belong to the same meeting (Task C). However, our simple approach yielded 94.8 % (task B) and 92.3% (task C), clearly outperforming most submissions in the challenge. We make our codebase release here https://github. com/mahajanparth19/Automin_Submission .","PeriodicalId":186820,"journal":{"name":"First Shared Task on Automatic Minuting at Interspeech 2021","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Shared Task on Automatic Minuting at Interspeech 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/automin.2021-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents our submission for the first shared task of automatic minuting (AutoMin@Interspeech 2021). The shared task consists of one main task generate minutes from the given meeting transcript. For this challenge, we leveraged state-of-art text summarization models to generate minutes using the transfer learning approach. We also provide an empirical analysis of our proposed method with other text summarization approaches. We evaluate our system submission quantitatively with 33% BERTscore and 11.6 % ROUGE L, which is rela-tively higher than the average submission in the shared task. Along with the qualitative evaluation, we also vouch for quantitative assessment, where we achieve (2.32, 2.64, 2.52) scores out of five for adequacy, grammatical correctness, and fluency. For the other two tasks, we use Jaccard and cosine text similarity metrics for a given transcript-minute pair corresponding to the same meeting (Task B) and if a given pair of meeting minutes belong to the same meeting (Task C). However, our simple approach yielded 94.8 % (task B) and 92.3% (task C), clearly outperforming most submissions in the challenge. We make our codebase release here https://github. com/mahajanparth19/Automin_Submission .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
团队AutoMinuters @ AutoMin 2021:利用最先进的文本摘要模型使用迁移学习生成会议记录
本文介绍了我们提交的第一个自动记录共享任务(AutoMin@Interspeech 2021)。共享任务包括一个主要任务:根据给定的会议记录生成会议记录。为了应对这一挑战,我们利用最先进的文本摘要模型,使用迁移学习方法生成会议记录。我们还提供了一个实证分析,我们提出的方法与其他文本摘要方法。我们以33%的BERTscore和11.6%的ROUGE L对我们的系统提交进行了定量评估,这相对高于共享任务中的平均提交。除了定性评估,我们还保证定量评估,我们在充分性,语法正确性和流畅性方面达到了(2.32,2.64,2.52)分(满分5分)。对于其他两个任务,我们使用Jaccard和余弦文本相似度指标,用于对应于同一会议(任务B)的给定转录-分钟对,以及是否属于同一会议(任务C)的给定会议记录对。然而,我们的简单方法产生了94.8%(任务B)和92.3%(任务C),明显优于挑战中的大多数提交。我们在这里发布代码库https://github。com/mahajanparth19/Automin_Submission。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Overview of the First Shared Task on Automatic Minuting (AutoMin) at Interspeech 2021 Team UEDIN @ AutoMin 2021: Creating Minutes by Learning to Filter an Extracted Summary Team Matus and Francesco @ AutoMin 2021: Towards Neural Summarization of Meetings Team ABC @ AutoMin 2021: Generating Readable Minutes with a BART-based Automatic Minuting Approach Team JU_PAD @ AutoMin 2021: MoM Generation from Multiparty Meeting Transcript
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1