K-d trees for semidynamic point sets

SCG '90 Pub Date : 1990-05-01 DOI:10.1145/98524.98564
J. Bentley
{"title":"K-d trees for semidynamic point sets","authors":"J. Bentley","doi":"10.1145/98524.98564","DOIUrl":null,"url":null,"abstract":"A <italic>K</italic>-d tree represents a set of <italic>N</italic> points in <italic>K</italic>-dimensional space. Operations on a <italic>semidynamic</italic> tree may delete and undelete points, but may not insert new points. This paper shows that several operations that require <italic>&Ogr;</italic>(log <italic>N</italic>) expected time in general <italic>K</italic>-d trees may be performed in constant expected time in semidynamic trees. These operations include deletion, undeletion, nearest neighbor searching, and fixed-radius near neighbor searching (the running times of the first two are proved, while the last two are supported by experiments and heuristic arguments). Other new techniques can also be applied to general <italic>K</italic>-d trees: simple sampling reduces the time to build a tree from <italic>&Ogr;</italic>(<italic>KN</italic> log <italic>N</italic>) to <italic>&Ogr;</italic>(<italic>KN</italic> + <italic>N</italic> log <italic>N</italic>), and more advanced sampling builds a robust tree in the same time. The methods are straightforward to implement, and lead to a data structure that is significantly faster and less vulnerable to pathological inputs than ordinary <italic>K</italic>-d trees.","PeriodicalId":113850,"journal":{"name":"SCG '90","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"408","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SCG '90","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/98524.98564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 408

Abstract

A K-d tree represents a set of N points in K-dimensional space. Operations on a semidynamic tree may delete and undelete points, but may not insert new points. This paper shows that several operations that require &Ogr;(log N) expected time in general K-d trees may be performed in constant expected time in semidynamic trees. These operations include deletion, undeletion, nearest neighbor searching, and fixed-radius near neighbor searching (the running times of the first two are proved, while the last two are supported by experiments and heuristic arguments). Other new techniques can also be applied to general K-d trees: simple sampling reduces the time to build a tree from &Ogr;(KN log N) to &Ogr;(KN + N log N), and more advanced sampling builds a robust tree in the same time. The methods are straightforward to implement, and lead to a data structure that is significantly faster and less vulnerable to pathological inputs than ordinary K-d trees.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半动态点集的K-d树
K-d树表示k维空间中N个点的集合。对半动态树的操作可以删除和取消删除点,但不能插入新的点。本文证明了一些在一般K-d树中需要&Ogr;(log N)期望时间的操作,在半动态树中可以在常数期望时间内完成。这些操作包括删除、取消删除、最近邻搜索和固定半径近邻搜索(前两种操作的运行时间得到了证明,后两种操作的运行时间得到了实验和启发式论证的支持)。其他新技术也可以应用于一般的K-d树:简单采样将构建树的时间从&Ogr;(KN log N)减少到&Ogr;(KN + N log N),更高级的采样在相同的时间内构建了一个鲁棒树。这些方法很容易实现,并且产生的数据结构比普通的K-d树更快,更不容易受到病态输入的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linear programming and convex hulls made easy Computing the minimum Hausdorff distance for point sets under translation On solving geometric optimization problems using shortest paths Maximin location of convex objects in a polygon and related dynamic Voronoi diagrams An O(n2log n) time algorithm for the MinMax angle triangulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1