Learning in neuro-fuzzy systems with symbolic attributes and missing values

D. Nauck, R. Kruse
{"title":"Learning in neuro-fuzzy systems with symbolic attributes and missing values","authors":"D. Nauck, R. Kruse","doi":"10.1109/ICONIP.1999.843976","DOIUrl":null,"url":null,"abstract":"Neuro-fuzzy classification approaches aim at creating fuzzy classification rules from data by using learning techniques derived from neural networks. NEFCLASS is able to learn fuzzy rules and fuzzy sets by simple heuristics. The aim of NEFCLASS is to quickly create interpretable fuzzy classifiers. Most neuro-fuzzy approaches can only deal with numerical attributes and cannot handle missing values. The authors present recent advances in the learning algorithms of NEFCLASS that address those problems.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.843976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Neuro-fuzzy classification approaches aim at creating fuzzy classification rules from data by using learning techniques derived from neural networks. NEFCLASS is able to learn fuzzy rules and fuzzy sets by simple heuristics. The aim of NEFCLASS is to quickly create interpretable fuzzy classifiers. Most neuro-fuzzy approaches can only deal with numerical attributes and cannot handle missing values. The authors present recent advances in the learning algorithms of NEFCLASS that address those problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有符号属性和缺失值的神经模糊系统的学习
神经模糊分类方法旨在利用源自神经网络的学习技术从数据中创建模糊分类规则。NEFCLASS能够通过简单的启发式学习模糊规则和模糊集。NEFCLASS的目的是快速创建可解释的模糊分类器。大多数神经模糊方法只能处理数值属性,不能处理缺失值。作者介绍了解决这些问题的NEFCLASS学习算法的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market basket analysis of library circulation data Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis Learning and recall of temporal sequences in the network of CA3 pyramidal cells and a basket cell Adaptive sensory integrating neural network based on a Bayesian estimation method Pre-filter design for high speed contouring machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1