A Model for COVID-19 Prediction Based on Spatio-temporal Convolutional Network

Zhengkai Wang, Weiyu Zhang, Zhongxiu Xia, Wenpeng Lu
{"title":"A Model for COVID-19 Prediction Based on Spatio-temporal Convolutional Network","authors":"Zhengkai Wang, Weiyu Zhang, Zhongxiu Xia, Wenpeng Lu","doi":"10.1109/IJCNN55064.2022.9892790","DOIUrl":null,"url":null,"abstract":"COVID-19 has become a worldwide epidemic. Prediction of COVID-19 is an effective way to control its spread. Recently, some research efforts have made great progress on this task. However, these works rarely combine both the temporal and spatial domains for case number prediction. Moreover, most of them are only suitable for short-term prediction tasks, which cannot achieve good long-term predicting effects. Therefore, we use a method that combines human-mobility factors and time-series factors - the Spatio-temporal convolutional network (G-TCN) to deal with these problems. Firstly, we use data on the mobility of people between regions to generate graphs of regional relationships. Secondly, to process the spatial information at each moment, we apply multi-layer graph convolutional neural networks (GCNs) to aggregate multi-layer neighborhood information. And we input the information obtained by GCNs at different moments into temporal convolutional networks (TCNs), which are used to process the time-series information. Finally, we tested the proposed G-TCN method using datasets from four countries. The experimental results show that G-TCN has lower prediction errors than other comparison methods and can better fit the trend of COVID-19 development.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

COVID-19 has become a worldwide epidemic. Prediction of COVID-19 is an effective way to control its spread. Recently, some research efforts have made great progress on this task. However, these works rarely combine both the temporal and spatial domains for case number prediction. Moreover, most of them are only suitable for short-term prediction tasks, which cannot achieve good long-term predicting effects. Therefore, we use a method that combines human-mobility factors and time-series factors - the Spatio-temporal convolutional network (G-TCN) to deal with these problems. Firstly, we use data on the mobility of people between regions to generate graphs of regional relationships. Secondly, to process the spatial information at each moment, we apply multi-layer graph convolutional neural networks (GCNs) to aggregate multi-layer neighborhood information. And we input the information obtained by GCNs at different moments into temporal convolutional networks (TCNs), which are used to process the time-series information. Finally, we tested the proposed G-TCN method using datasets from four countries. The experimental results show that G-TCN has lower prediction errors than other comparison methods and can better fit the trend of COVID-19 development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空卷积网络的COVID-19预测模型
COVID-19已成为全球性流行病。预测新冠肺炎疫情是控制疫情传播的有效手段。近年来,一些研究工作在这方面取得了很大进展。然而,这些工作很少结合时间和空间域来预测病例数。而且,它们大多只适用于短期预测任务,无法达到较好的长期预测效果。因此,我们使用一种结合人类迁移因素和时间序列因素的方法-时空卷积网络(G-TCN)来处理这些问题。首先,我们使用区域间人口流动数据生成区域关系图。其次,利用多层图卷积神经网络(GCNs)对多层邻域信息进行聚合,处理每一时刻的空间信息;然后将GCNs在不同时刻获取的信息输入到时序卷积网络(temporal convolutional networks, TCNs)中,由TCNs对时间序列信息进行处理。最后,我们使用来自四个国家的数据集测试了所提出的G-TCN方法。实验结果表明,与其他对比方法相比,G-TCN预测误差更小,能更好地拟合COVID-19的发展趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parameterization of Vector Symbolic Approach for Sequence Encoding Based Visual Place Recognition Nested compression of convolutional neural networks with Tucker-2 decomposition SQL-Rank++: A Novel Listwise Approach for Collaborative Ranking with Implicit Feedback ACTSS: Input Detection Defense against Backdoor Attacks via Activation Subset Scanning ADV-ResNet: Residual Network with Controlled Adversarial Regularization for Effective Classification of Practical Time Series Under Training Data Scarcity Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1