Enhanced representation of web pages for usability analysis with eye tracking

Raphael Menges, Hanadi Tamimi, C. Kumar, T. Walber, Christoph Schaefer, Steffen Staab
{"title":"Enhanced representation of web pages for usability analysis with eye tracking","authors":"Raphael Menges, Hanadi Tamimi, C. Kumar, T. Walber, Christoph Schaefer, Steffen Staab","doi":"10.1145/3204493.3214308","DOIUrl":null,"url":null,"abstract":"Eye tracking as a tool to quantify user attention plays a major role in research and application design. For Web page usability, it has become a prominent measure to assess which sections of a Web page are read, glanced or skipped. Such assessments primarily depend on the mapping of gaze data to a Web page representation. However, current representation methods, a virtual screenshot of the Web page or a video recording of the complete interaction session, suffer either from accuracy or scalability issues. We present a method that identifies fixed elements on Web pages and combines user viewport screenshots in relation to fixed elements for an enhanced representation of the page. We conducted an experiment with 10 participants and the results signify that analysis with our method is more efficient than a video recording, which is an essential criterion for large scale Web studies.","PeriodicalId":237808,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3204493.3214308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Eye tracking as a tool to quantify user attention plays a major role in research and application design. For Web page usability, it has become a prominent measure to assess which sections of a Web page are read, glanced or skipped. Such assessments primarily depend on the mapping of gaze data to a Web page representation. However, current representation methods, a virtual screenshot of the Web page or a video recording of the complete interaction session, suffer either from accuracy or scalability issues. We present a method that identifies fixed elements on Web pages and combines user viewport screenshots in relation to fixed elements for an enhanced representation of the page. We conducted an experiment with 10 participants and the results signify that analysis with our method is more efficient than a video recording, which is an essential criterion for large scale Web studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过眼动追踪增强网页可用性分析的表示
眼动追踪作为一种量化用户注意力的工具,在研究和应用设计中发挥着重要作用。对于Web页面的可用性,它已经成为评估Web页面的哪些部分被阅读、浏览或跳过的重要指标。这种评估主要依赖于注视数据到Web页面表示的映射。但是,当前的表示方法(Web页面的虚拟屏幕截图或完整交互会话的视频记录)存在准确性或可伸缩性问题。我们提出了一种方法,可以识别Web页面上的固定元素,并将用户视口屏幕截图与固定元素相结合,以增强页面的表示。我们进行了一个有10名参与者的实验,结果表明,用我们的方法进行分析比视频记录更有效,而视频记录是大规模网络研究的基本标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating gender difference on algorithmic problems using eye-tracker Eyemic Gaze patterns during remote presentations while listening and speaking An investigation of the effects of n-gram length in scanpath analysis for eye-tracking research Towards concise gaze sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1