Human-Object Interaction Detection with Missing Objects

Kaen Kogashi, Yang Wu, S. Nobuhara, K. Nishino
{"title":"Human-Object Interaction Detection with Missing Objects","authors":"Kaen Kogashi, Yang Wu, S. Nobuhara, K. Nishino","doi":"10.23919/MVA51890.2021.9511361","DOIUrl":null,"url":null,"abstract":"Existing studies on human-object interaction (HOI) assume that human and object instances can be detected. This paper proposes a more practical HOI detection method for when object instances are not necessarily easily detectable. To our knowledge, we introduce the first method for such challenging HOI detection that incorporates global scene information. The two most widely used public HOI benchmark datasets are shown to contain many cases of HOI with missing objects (HOI-MO). We label these to compose new test sets for the proposed method. The effectiveness and superiority of the proposed method are demonstrated through extensive experiments and comparisons.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Existing studies on human-object interaction (HOI) assume that human and object instances can be detected. This paper proposes a more practical HOI detection method for when object instances are not necessarily easily detectable. To our knowledge, we introduce the first method for such challenging HOI detection that incorporates global scene information. The two most widely used public HOI benchmark datasets are shown to contain many cases of HOI with missing objects (HOI-MO). We label these to compose new test sets for the proposed method. The effectiveness and superiority of the proposed method are demonstrated through extensive experiments and comparisons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
缺失对象的人-物交互检测
现有的人-物交互(HOI)研究假设人-物实例可以被检测到。本文提出了一种更实用的目标实例不易检测的HOI检测方法。据我们所知,我们介绍了第一种具有挑战性的HOI检测方法,该方法结合了全球场景信息。两个最广泛使用的公共HOI基准数据集显示包含许多缺失对象(HOI- mo)的HOI情况。我们将这些标记为所提出的方法组成新的测试集。通过大量的实验和比较,证明了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Output augmentation works well without any domain knowledge On the Influence of Viewpoint Change for Metric Learning Shape from shading and polarization constrained by approximate shape Crack Segmentation for Low-Resolution Images using Joint Learning with Super- Resolution Estimating Contribution of Training Datasets using Shapley Values in Data-scale for Visual Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1